Nodal finite element de Rham complexes

Kaibo Hu

joint work with Snorre H. Christiansen (Oslo) and Jun Hu (Beijing)

University of Minnesota

Baltimore, January 16 - 19, 2019

Joint Mathematics Meeting

(日)

1/16

2 2D construction

<ロト < 回 > < 巨 > < 巨 > < 巨 > 三 の Q (C) 3/16

Finite element de Rham complexes

where $H(d) := \{ u \in L^2 : du \in L^2 \}$.

- applications: diffusion, Maxwell, MHD, Stokes (discontinuous velocity), etc.
- FE: Lagrange, Nédélec (1st & 2nd), Raviart-Thomas, Brezzi-Douglas-Marini etc.
- any dimension, any degree
- software packages: FEniCS, NGSolve etc.
- problems not completely solved (computational aspects):
 - high order bases: condition number, sparsity, symmetry...
 - nodal bases: practitioners' point of view

two relevant issues: good bases are hard to achieve because of the non-scalar nature of the vector elements

Stokes complexes

de Rham complexes with enhanced smoothness (c.f. M. Neilan, talk at IMA 2014)

$$\mathbb{R} \xrightarrow{\subset} H_h^1 \xrightarrow{\text{grad}} H_h^+(\text{curl}) \xrightarrow{\text{curl}} \left[H_h^1 \right]^3 \xrightarrow{\text{div}} L_h^2 \to 0$$
$$\stackrel{\cap}{\mathbb{R} \xrightarrow{\subset}} H^1 \xrightarrow{\text{grad}} H^+(\text{curl}) \xrightarrow{\text{curl}} \left[H^1 \right]^3 \xrightarrow{\text{div}} L^2 \to 0$$

- divergence-free condition is important for fluid computation, V.John, A.Linke, C.Merdon, M.Neilan, LG.Rebholz 2017
- Examples of divergence-free Stokes elements:
 - Scott-Vogelius: nodal 𝒫_rC⁰-𝒫_{r-1}C⁻¹, certain meshes & high degree,
 R. Scott, M. Vogelius 1985; J. Guzmán, R. Scott 2017 etc.
 - Stokes complexes with supersmoothness (super splines),

R.Falk, M.Neilan 2013; M.Neilan 2015; J.Guzmán, M.Neilan 2018 etc.

• Stokes pairs (complexes) on macroelements.

S. Zhang 2008, 2009, 2011; P.Alfeld, T.Sorokina 2015; G.Fu, J.Guzmán, M.Neilan 2018; S.Christiansen, K.Hu 2018 etc.

Goal: H(curl)/H(div) elements with nodal bases fitting into de Rham complexes

2D H(div)/H(rot)

- o discrete vector fields:
 - continuous element (Scott-Vogelius velocity): continuous normal and tangential components,
 - discontinuous element (DG): discontinuous normal and tangential components,
 - partially discontinuous element: discontinuous tangential, continuous normal.
- various characterizations for the partially discontinuous element:
 - locally \$\mathcal{P}_r\$, \$H(div)\$ conforming, \$C^0\$ at vertices (super splines),
 R. Stenberg 2010.
 - \mathcal{P}_r Lagrange + BDM_r bubbles,
 - partially discontinuous element and nodal bases.

Discrete complexes

- partially discontinuous elements fit in a complex,
- canonical interpolations do not commute with curl/div (or grad/rot),
- bounded cochain projections can be constructed, techniques for Stokes elements
- can be extended to 3D.

"Restriction" of higher dimensional complex to faces should be a lower dimensional complex.

true for classical de Rham elements, Finite Element System (FES).

H(div) nodal element

• partially discontinuous Lagrange \mathcal{P}_r vectors, $r \geq 3$,

Lagrange vectors with discontinuous tangential components on faces

- alternative characterizations
 - continuous normal components across edges and faces, C⁰ at vertices,
 - Lagrange *P_r* + BDM_r bubbles,
 BDM bubbles have C⁰ supersmoothness at vertices

H(curl) nodal elements: motivation

- first attempt: partially discontinuous Lagrange *P_r* vectors with possibly discontinuous normals (C⁰ on edges, C^τ on faces),
- but... 2D restriction (Scott-Vogelius) unlikely fits into a complex on general meshes.

"Restriction" of a 3D complex to a face should be a reasonable 2D complex

Solution 1: Argyris type complex

- 0-form: C² at vertices, C¹ on edges, C⁰ across faces,
- 1-form: C¹ at vertices, C⁰ on edges, tangential continuity across faces,
 Hermite type H(curl) nodal element
- 2-form: C⁰ at vertices,
- extension of 2D Falk-Neilan Stokes complex.

Solution 2: macroelements on Worsey-Farin split

• 2D restriction: Clough-Tocher complex,

V.John, A.Linke, C.Merdon, M.Neilan, LG.Rebholz 2017; S. Christiansen, K. Hu, 2018; G. Fu, J. Guzmán, M. Neilan, 2018

• 0-form: C^0 across faces, C^1 elsewhere,

lowest order with mesh alignment: boils down to the Worsey-Farin C1 element

- 1-form: tangential continuity across faces, C⁰ elsewhere,
 - Lagrange type H(curl) nodal element
- 2-, 3-forms: BDM and DG on the Worsey-Farin split.

Technical issues of macroelements

 classical definition for Worsey-Farin macroelements (based on Bernstein-Bézier techniques):

$$\left\{ u\in \textit{C}^{1}\left(\mathcal{T}_{\mathrm{WF}}
ight) :u\in\textit{C}^{2}(\textit{w})
ight\} ,$$

 \mathcal{T}_{WF} : Worsey-Farin mesh, w: refinement point,

- C² condition is *intrinsic supersmoothness*, and can be removed from definition,
 - another example: 2D Clough-Tocher element
 - byproduct of a dimension count,
 - a systematic investigation:

M. Floater, K. Hu, A characterization of supersmoothness of multivariate splines; in preparation.

 Locally, BDM elements on the Worsey-Farin split have a C⁰ pre-image. dimension count References:

- S. Christiansen, J. Hu, K. Hu, Nodal finite element de Rham complexes, Num. Math. 2016.
- J. Hu, K. Hu, Partially discontinuous nodal elements for H(curl) and H(div), in preparation.
- H(curl)/H(div) conforming elements with nodal (Lagrange/Hermite) bases,
- cubical elements yields nonconforming convergence for H¹-L² Stokes problems,
 - A. Gillette, K. Hu, S. Zhang, Nonstandard finite element de Rham complexes on cubical meshes, 2018, preprint.
- connecting complexes into the Bernstein-Gelfand-Gelfand diagrams leads to symmetric/trace-free tensor elements,
- potential applications in high order methods and Maxwell/Stokes problems,
- further questions:
 - H(curl) nodal elements on general meshes,

"generalized Cartesian elements" in early engineering literature

bases and preconditioning.

THANK YOU!