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Finite element de Rham complexes

R - Hh(grad)
grad- Hh(curl)

curl- Hh(div)
div- L2

h
- 0

∩ ∩ ∩ ∩

R - H(grad)
grad- H(curl)

curl- H(div)
div- L2 - 0

where H(d) :=
{

u ∈ L2 : du ∈ L2} .
applications: diffusion, Maxwell, MHD, Stokes (discontinuous velocity), etc.
FE: Lagrange, Nédélec (1st & 2nd), Raviart-Thomas, Brezzi-Douglas-Marini etc.
any dimension, any degree
software packages: FEniCS, NGSolve etc.

problems not completely solved (computational aspects):
high order bases: condition number, sparsity, symmetry...
nodal bases: practitioners’ point of view
two relevant issues: good bases are hard to achieve because of the non-scalar nature of the vector elements
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Stokes complexes

de Rham complexes with enhanced smoothness (c.f. M. Neilan, talk at IMA 2014)

R
⊂- H1

h
grad- H+

h (curl)
curl-

[
H1

h

]3 div- L2
h
- 0

∩ ∩ ∩ ∩

R
⊂- H1 grad- H+(curl)

curl-
[
H1
]3 div- L2 - 0

divergence-free condition is important for fluid computation,
V.John, A.Linke, C.Merdon, M.Neilan, LG.Rebholz 2017

Examples of divergence-free Stokes elements:
Scott-Vogelius: nodal Pr C0-Pr−1C−1, certain meshes & high degree,
R. Scott, M. Vogelius 1985; J. Guzmán, R. Scott 2017 etc.

Stokes complexes with supersmoothness (super splines),
R.Falk, M.Neilan 2013; M.Neilan 2015; J.Guzmán, M.Neilan 2018 etc.

Stokes pairs (complexes) on macroelements.
S. Zhang 2008, 2009, 2011; P.Alfeld, T.Sorokina 2015; G.Fu, J.Guzmán, M.Neilan 2018; S.Christiansen, K.Hu

2018 etc.
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Goal: H(curl)/H(div) elements with nodal bases fitting into de Rham
complexes
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2D H(div)/H(rot)

discrete vector fields:
continuous element (Scott-Vogelius velocity): continuous normal and
tangential components,
discontinuous element (DG): discontinuous normal and tangential
components,
partially discontinuous element: discontinuous tangential, continuous
normal.

various characterizations for the partially discontinuous element:
locally Pr , H(div) conforming, C0 at vertices (super splines),
R. Stenberg 2010.

Pr Lagrange + BDMr bubbles,
partially discontinuous element and nodal bases.

8 / 16



Discrete complexes

partially discontinuous elements fit in a complex,

canonical interpolations do not commute with curl/div (or grad/rot),

bounded cochain projections can be constructed,
techniques for Stokes elements

can be extended to 3D.

“Restriction” of higher dimensional complex to faces should be a lower dimensional
complex.

true for classical de Rham elements, Finite Element System (FES).
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H(div) nodal element

partially discontinuous Lagrange Pr vectors, r ≥ 3,
Lagrange vectors with discontinuous tangential components on faces

alternative characterizations
continuous normal components across edges and faces, C0 at vertices,
Lagrange Pr + BDMr bubbles,
BDM bubbles have C0 supersmoothness at vertices

11 / 16



H(curl) nodal elements: motivation

first attempt: partially discontinuous Lagrange Pr vectors with possibly
discontinuous normals (C0 on edges, Cτ on faces),

but... 2D restriction (Scott-Vogelius) unlikely fits into a complex on general
meshes.

“Restriction” of a 3D complex to a face should be a reasonable 2D complex
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Solution 1: Argyris type complex

0-form: C2 at vertices, C1 on edges, C0 across faces,

1-form: C1 at vertices, C0 on edges, tangential continuity across faces,
– Hermite type H(curl) nodal element

2-form: C0 at vertices,

extension of 2D Falk-Neilan Stokes complex.
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Solution 2: macroelements on Worsey-Farin split

2D restriction: Clough-Tocher complex,
V.John, A.Linke, C.Merdon, M.Neilan, LG.Rebholz 2017; S. Christiansen, K. Hu, 2018; G. Fu, J. Guzmán, M. Neilan,

2018

0-form: C0 across faces, C1 elsewhere,
lowest order with mesh alignment: boils down to the Worsey-Farin C1 element

1-form: tangential continuity across faces, C0 elsewhere,
– Lagrange type H(curl) nodal element

2-, 3-forms: BDM and DG on the Worsey-Farin split.
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Technical issues of macroelements

classical definition for Worsey-Farin macroelements (based on Bernstein-Bézier
techniques): {

u ∈ C1 (TWF) : u ∈ C2(w)
}
,

TWF: Worsey-Farin mesh, w : refinement point,

C2 condition is intrinsic supersmoothness, and can be removed from definition,
another example: 2D Clough-Tocher element
byproduct of a dimension count,
a systematic investigation:
M. Floater, K. Hu, A characterization of supersmoothness of multivariate
splines; in preparation.

Locally, BDM elements on the Worsey-Farin split have a C0 pre-image.
dimension count
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Conclusions

References:
S. Christiansen, J. Hu, K. Hu, Nodal finite element de Rham complexes, Num. Math. 2016.
J. Hu, K. Hu, Partially discontinuous nodal elements for H(curl) and H(div), in preparation.

H(curl)/H(div) conforming elements with nodal (Lagrange/Hermite) bases,

cubical elements yields nonconforming convergence for H1-L2 Stokes problems,
A. Gillette, K. Hu, S. Zhang, Nonstandard finite element de Rham complexes on cubical meshes, 2018, preprint.

connecting complexes into the Bernstein-Gelfand-Gelfand diagrams leads to symmetric/trace-free tensor elements,

potential applications in high order methods and Maxwell/Stokes problems,

further questions:
H(curl) nodal elements on general meshes,

“generalized Cartesian elements” in early engineering literature

bases and preconditioning.

THANK YOU!
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