Finite elements for curvature

Kaibo Hu

joint work with Snorre H. Christiansen (Oslo)

University of Minnesota

Chinese Academy of Sciences, Beijing, June 10, 2019
Outline

1. Elasticity complex and motivation
2. Finite element sequences
Elasticity complex and motivation

Finite element sequences
De Rham complexes

De Rham complex in 3D:

\[\begin{array}{ccccccccc}
0 & \xrightarrow{\text{grad}} & L^2(\Omega) & \xrightarrow{\text{curl}} & L^2(\Omega) \otimes V & \xrightarrow{\text{div}} & L^2(\Omega) & \rightarrow & 0,
\end{array} \]

with the domain complex:

\[\begin{array}{ccccccccc}
0 & \xrightarrow{\text{grad}} & H^1(\Omega) & \xrightarrow{\text{curl}} & H(\text{curl}, \Omega) & \xrightarrow{\text{div}} & H(\text{div}, \Omega) & \rightarrow & L^2(\Omega) & \rightarrow & 0.
\end{array} \]

- \(V \): vectors, \(M \): matrices, \(S \): symmetric matrices,
- \(H(\mathcal{D}, \Omega) := \{ u \in L^2 : \mathcal{D} u \in L^2 \} \),
- complex: \(\text{curl grad} = 0, \text{div curl} = 0 \),
- cohomology: \(\mathcal{N}(\text{curl})/\mathcal{R}(\text{grad}), \mathcal{N}(\text{div})/\mathcal{R}(\text{curl}) \).

The de Rham complex, as an example of more general Hilbert complexes, plays a vital role in the Finite Element Exterior Calculus (FEEC).
Elasticity complex (linearized Calabi complex)

\[
0 \rightarrow C^\infty \otimes V \xrightarrow{\text{def}} C^\infty \otimes \mathbb{S} \xrightarrow{\text{inc}} C^\infty \otimes \mathbb{S} \xrightarrow{\text{div}} C^\infty \otimes V \rightarrow 0
\]

\textit{displacement} \hspace{1cm} \textit{strain (metric)} \hspace{1cm} \textit{stress (curvature)} \hspace{1cm} \textit{force}

- ∇: vectors, \mathbb{S}: symmetric matrices,
- linearized deformation \quad $\text{def } u := 1/2(\nabla u + u \nabla)$,
- linearized curvature \quad $\text{inc } v := \nabla \times v \times \nabla$,
- Saint-Venant compatibility condition: \quad $e = \text{def } u \Rightarrow \text{inc } e = 0$
- $\text{inc } \circ \text{def } = 0$, \quad $\text{div } \circ \text{inc } = 0$,
- classical elasticity
 - displacement formulation: displacement,
 - Hellinger-Reissner principle: stress+force,
 - intrinsic formulation: strain,
 \quad Ciarlet, Gratie, Mardare, 2009; Ciarlet, Ciarlet, 2008 etc.
- continuum description of defects (incompatibility theory)
 - elasto-plastic decomposition: $e = e^e + e^p$, $\text{inc } e^e = 0$,
 - Beltrami decomposition: $e = \text{def } w + \text{inc } v$.

\[5/17\]
(A little bit) more on the continuous level

Continuous level has not been clarified yet...

Basically, we have all the analogous properties as the de Rham version. (Arnold, H., *Construction of Hilbert complexes*, in preparation.)

\[\mathcal{H} \subset H^1(\mathbb{V}) \xrightarrow{\text{def}} H(\text{inc}; \mathbb{S}) \xrightarrow{\text{inc}} H(\text{div}; \mathbb{S}) \xrightarrow{\text{div}} L^2(\mathbb{V}) \longrightarrow 0. \]

- Cohomology is isomorphic to the de Rham cohomology \(\mathcal{H}_{dR} \otimes (\mathbb{V} \otimes \mathbb{V}) \),
- Operators have closed range,
- Poincaré type inequalities (→ Korn’s inequality),
- Hodge decomposition and well-posed Hodge Laplacian boundary value problems, (→ Beltrami type decomposition)
- Regular decomposition,
- Compactness property,
- Poincaré/Koszul operators (→ Cesàro-Volterra path integral),
Elasticity-electromagnetism analogue

Kröner [13] has developed a most useful analogy between the theory of internal stresses and strains as described in sections 2 to 6 and the theory of the magnetic field of distributions of stationary electric currents. Table 1 contains a list of the corresponding physical quantities, differential operators, and equations. We hope that this table is understandable without any further comments (see also the review article by de Wit [10]).

Table 1
Correspondences in elasticity and magnetism

<table>
<thead>
<tr>
<th>Elasticity</th>
<th>Magnetism</th>
</tr>
</thead>
<tbody>
<tr>
<td>vector quantity</td>
<td>scalar quantity</td>
</tr>
<tr>
<td>tensor rank two</td>
<td>vector</td>
</tr>
<tr>
<td>tensor rank four</td>
<td>tensor rank two</td>
</tr>
<tr>
<td>Div</td>
<td>div</td>
</tr>
<tr>
<td>Ink</td>
<td>curl</td>
</tr>
<tr>
<td>Div Ink ≡ 0</td>
<td>div curl ≡ 0</td>
</tr>
<tr>
<td>Def</td>
<td>grad</td>
</tr>
<tr>
<td>Ink Def ≡ 0</td>
<td>curl grad ≡ 0</td>
</tr>
<tr>
<td>Burgers vector (\mathbf{b})</td>
<td>current (I)</td>
</tr>
<tr>
<td>incompatibility tensor (\eta)</td>
<td>current density (J)</td>
</tr>
<tr>
<td>strain tensor (\varepsilon)</td>
<td>magnetic intensity (H)</td>
</tr>
<tr>
<td>stress tensor (\sigma)</td>
<td>magnetic induction (B)</td>
</tr>
<tr>
<td>stress function tensor (\chi, \chi')</td>
<td>vector potential (A)</td>
</tr>
<tr>
<td>elastic constants (C) (or (G, K))</td>
<td>permeability (\mu)</td>
</tr>
<tr>
<td>displacement (\mathbf{s})</td>
<td>scalar potential (\psi)</td>
</tr>
<tr>
<td>equation (3)</td>
<td>(\nabla^2 \mathbf{A} = - \mu \mathbf{J})</td>
</tr>
<tr>
<td>equation (5)</td>
<td>(\text{div} \mathbf{A} = 0)</td>
</tr>
<tr>
<td>equation (17)</td>
<td>(\mathbf{A} = \mu \int \int \frac{\mathbf{J}(\mathbf{r}')}{</td>
</tr>
<tr>
<td>equation (18)</td>
<td>(\mathbf{B} = \text{curl} \mathbf{A})</td>
</tr>
<tr>
<td>equations (19), (19a)</td>
<td>(\text{div} \mathbf{B} = 0)</td>
</tr>
<tr>
<td>equation (20)</td>
<td>(\text{curl} \mathbf{H} = \mathbf{J})</td>
</tr>
<tr>
<td>equation (22)</td>
<td></td>
</tr>
</tbody>
</table>
a concrete model describing dislocation and defects (Amstutz, Van Goethem 2016):

\[
\begin{align*}
\text{inc inc } e &= f, \\
\text{div } e &= 0,
\end{align*}
\]

elasticity analogue of the Maxwell equations

\[
\begin{align*}
\text{curl curl } E &= g, \\
\text{div } E &= 0.
\end{align*}
\]

Question: how to discretize, even in 2D?

3D elasticity complex:

\[
\begin{align*}
\mathcal{R}M &\subset H^1 \otimes \mathbb{V} \xrightarrow{\text{def}} H(\text{inc}; \mathbb{S}) \xrightarrow{\text{inc}} H(\text{div}; \mathbb{S}) \xrightarrow{\text{div}} L^2 \otimes \mathbb{V} \rightarrow 0,
\end{align*}
\]

2D stress complex:

\[
\begin{align*}
\mathcal{P}_1 &\subset H^2 \xrightarrow{\text{airy}} H(\text{div}; \mathbb{S}) \xrightarrow{\text{div}} L^2 \otimes \mathbb{V} \rightarrow 0,
\end{align*}
\]

2D strain complex:

\[
\begin{align*}
\mathcal{R}M &\subset H^1 \otimes \mathbb{V} \xrightarrow{\text{def}} H(\text{rot rot}; \mathbb{S}) \xrightarrow{\text{rot rot}} L^2 \rightarrow 0.
\end{align*}
\]
Existing work

$H(\text{div, } \mathbb{S})-L^2(\nabla)$ pair:
- 2D macroelements: Johnson, Mercier 1978; Arnold, Douglas, Gupta 1984
- 2D and 3D : Arnold, Winther 2002; Arnold, Awanou, Winther 2008
- nD canonical construction: Hu, Zhang 2015
- other nonconforming methods, e.g., Pechstein, Schöberl 2012, TDNNS, $H(\text{div div; } \mathbb{S})-H(\text{curl})$

$H(\text{inc})$ element fitting into a sequence:
- Regge calculus from the finite element point of view (Christiansen 2011) piecewise $\mathcal{P}^0(\mathbb{S})$, tangential-tangential continuity, highly nonconforming,
- Li 2018 thesis: higher order Regge.

Goal of this work: first conforming 2D $H(\text{inc})$ element fitting in a sequence (conforming Regge type element)
1 Elasticity complex and motivation

2 Finite element sequences
Discrete stress complex: BGG approach

\[\mathcal{P}_1 \subset H^2 \xrightarrow{\text{airy}} H(\text{div}; \mathbb{S}) \xrightarrow{\text{div}} L^2 \otimes \mathbb{V} \rightarrow 0, \]

\[\mathbb{R} \subset H^2 \xrightarrow{\text{curl}} H^1 \otimes \mathbb{V} \xrightarrow{\text{div}} L^2 \rightarrow 0 \]

\[\mathbb{V} \subset H^1 \otimes \mathbb{V} \xrightarrow{\text{curl}} H(\text{div}) \otimes \mathbb{V} \xrightarrow{\text{div}} L^2 \otimes \mathbb{V} \rightarrow 0 \]

(anti-)commuting diagram, \(dS = -Sd \), bijectivity, surjectivity
Output: Johnson-Mercier type elements.

Applying this BGG type diagram chase to other Stokes type complexes:

- other macroelements
Discrete stress complex: Poincaré operator approach

- Poincaré operators:
 - explicit potential, Poincaré lemma, canonical construction of FEs,
 - null-homotopy identity: $\mathcal{D}^{i-1} \mathcal{P}^i + \mathcal{P}^{i+1} \mathcal{D}^i = \text{id}$,
 - complex property: $\mathcal{P}^{i-1} \mathcal{P}^i = 0$,
 - polynomial-preserving property.

- Koszul operators: Poincaré acting on homogeneous polynomials, similar properties.

- for the stress complex (Christiansen, Hu, Sande 2019):

\[
\mathcal{K}_r^1 u = x^\perp \cdot u \cdot x^\perp,
\]

\[
(\mathcal{K}_r^2 u)(x) = \text{sym} \left(\frac{1}{r + 2} u \otimes x + \frac{1}{(r + 2)(r + 3)} \text{curl} \left(x^\perp \cdot ux \right) \right).
\]
Discrete strain complex: BGG approach

\[
\begin{align*}
\text{RM} & \xrightarrow{\subset} H^2 \otimes V \xrightarrow{\text{def}} H^1(\text{rot rot}; \mathbb{S}) \xrightarrow{\text{rot rot}} L^2 \xrightarrow{} 0. \\
V & \xrightarrow{\subset} H^2 \otimes V \xrightarrow{\text{grad}} H^1(\text{rot rot}; \mathbb{M}) \xrightarrow{\text{rot}} H(\text{rot}) \xrightarrow{} 0 \\
\mathbb{R} & \xrightarrow{\subset} H^1 \xrightarrow{\text{grad}} H(\text{rot}) \xrightarrow{\text{rot}} L^2 \xrightarrow{} 0
\end{align*}
\]
Output:

Equivalent edge DOFs: $\int_e \text{rot} \, u \cdot \tau \iff \int_e \partial_n (\tau \cdot u \cdot \tau)$ for $u \in C^0 \mathcal{P}^2$.
Discrete strain complex: lower regularity

- Koszul operators for the strain complex:
 \[\mathcal{K}_1^r (E) = \frac{1}{r+1} E \cdot x + \frac{1}{(r+1)(r+2)} x \wedge (\text{rot} E) \cdot x : C^\infty (\mathbb{S}) \mapsto C^\infty (\mathbb{V}), \]
 \[\mathcal{K}_2^r (V) = \frac{1}{(r+2)(r+3)} x^\perp \otimes V \otimes x^\perp : C^\infty (\mathbb{S}) \mapsto C^\infty (\mathbb{S}). \]

- Strain complexes with lower regularity and fewer DOFs are possible:
 \[\mathbb{V} \subset H^1 (\text{rot}) \xrightarrow{\text{def}} H (\text{rot}; \mathbb{S}) \cap H (\text{rot rot}; \mathbb{S}) \xrightarrow{\text{rot rot}} L^2 \longrightarrow 0 \]

- Can also be obtained by a diagram chase.
Conclusions

Reference:

- Finite element systems for vector bundles: elasticity and curvature; Christiansen, H., arXiv:1906.09128.
- Poincaré path integrals for elasticity; Christiansen, H., Sande, *Journal de Mathématiques Pures et Appliquées*, accepted, 2019

- discrete BGG diagram chase is based on several Stokes type complexes with various regularity, which is an important topic by itself,

- 3D is ongoing,

- comparison to discrete differential geometry and potential applications in defect theory, geometric problems (Ricci flows, Einstein equations etc.).