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Classical definition of finite elements:

splines (piecewise polynomials with certain continuity) that can be obtained by gluing local pieces.

/\ &
c° C C

» degrees of freedom (DoFs): minimal determining set (defined on one simplex)
» unisolvence

dot: function value, circles: derivative value, arrows: normal (tangential component) or normal
derivative, depending on the context.

This talk: vector- and tensor-valued problems (Maxwell, Navier-Stokes, elasticity, Einstein...)

» The question can be asked for general splines, although most examples are (simplicial) finite
elements.

» Focusing on general ideas in the literature, rather than individual results.
Some references up to 2022 can be found in

[ Hu, K. (2022). Oberwolfach report: Discretization of Hilbert complexes. arXiv:2208.03420.
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Basic homological algebra

it i 9y
Vi: vector spaces, d': linear (or nonlinear) operators
» complex: d'V/ c VI*1, d*'od =0, Vi, (implies R(d'~") ¢ N(d"))
> exact: N(d') = R(d™™"),
» cohomology (when d is linear): 7' := N(d')/R(d"™1).

Example: de Rham complex

0 — 5 C°N0 — @y goopt 9L, L 9T poopn

C>®NK: (smooth) k-forms,  d*: exterior derivative.

Vector proxies in 3D:

grad

0 Cc> C® @RS —U, co g RS AV, o= N



CONNECTIONS TO PDES: HODGE-LAPLACIAN PROBLEMS

Formal adjoint of operators:

grad® = —div, curl®* =curl, div¥ = —grad.
Jogradu-v =— [, udivv+bound. term, [,curlu-v = [, u-curlv+ bound. term
(gradu,v) = (u,—divv), (curlu,v) = (u,curlv)

Formal adjoint of de Rham complex:
0+ C®(Q) < co(@R%) <« co(R3) <& c>(Q) «— o.

dy = —div, df :=curl, dj:=—grad.
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CONNECTIONS TO PDES: HODGE-LAPLACIAN PROBLEMS

(d*di_y + did*)u="f.



CONNECTIONS TO PDES: HODGE-LAPLACIAN PROBLEMS

(d*di_y + did*)u="f.

grad
0 ——— C™(Q) ﬁd. C®(Q; R?) C>(Q; R?)
Hodge-Laplacian problem:
—divgradu = f.

Poisson equation.

Cc>=(Q)



CONNECTIONS TO PDES: HODGE-LAPLACIAN PROBLEMS

(d*di_y + did*)u="f.

grad url
0 Cx(Q) —— C¥(UR%) T C®(URY) c=(Q)
—div curl

Hodge-Laplacian problem:
—graddivv +curlcurlv = f.

Maxwell equations.



CONNECTIONS TO PDES: HODGE-LAPLACIAN PROBLEMS

(d*di_y + did*)u="f.

curl div
0 Cc>(Q) CR(URY) T2 CH (%) = C=(9)
cur —gra

Hodge-Laplacian problem:
curlcurlv — graddivv = f.

Maxwell equations.



CONNECTIONS TO PDES: HODGE-LAPLACIAN PROBLEMS

(d*di_y + did*)u="f.

div
0 C>(Q) C>®(Q; R®) C®(Q;R3) — ° C>®(Q) — o.
—gra

Hodge-Laplacian problem:
—divgradu = f.

Poisson equation.



USE FINITE ELEMENTS/SPLINES IN A COMPLEX!

(curlcurl —graddiviu = —Au=f, inQ,
u-n=0, onoQ,
curlux n=0, onof.
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Figure 5.1. Finite element solution to the Hodge Laplacian problem on an L-
shaped domain (with f = (1,0)). The left figure is calculated with a mixed method which is
known to converge to the solution in L*. The right figure is based on the primal formulation
using 24,576 piecewise linear elements. The primal-based numerical solution entirely

misses the dominant behavior at the reentrant corner and produces a wholly inaccurate
solution.

Arnold, Finite element exterior calculus, SIAM, Chapter 5

' grad& B ‘ div&
) —_— —_— —_— —_—(

Philosophy: vector/tensor problems cannot be treated as a collection of scalar problems for components.
Structures should be incorporated (differential structures, conomology).
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Many more examples. Using finite elements in a complex is important for
» avoiding spurious solutions of eigenvalue problems,
» parameter-robustness of iterative solvers,
P structure-preserving properties (divergence-free constraints etc.)
> .

Things work when we discrete the entire complex and preserve the cohomology.
Goal of the rest of the talk: construct finite element (spline) complexes with the correct cohomology

Discrete Differential Forms (Bossavit 1988, Hiptmair 1999, ...),
Finite Element Exterior Calculus (“FEEC”, Arnold, Falk, Winther 2006, ...)

e

> Arnold, D. N. (2018). Finite element exterior calculus. SIAM.

> Arnold, D. N,, Falk, R. S., & Winther, R. (2006). Finite element exterior calculus, homological
techniques, and applications. Acta numerica, 15, 1-155.

» Hiptmair, R. (2002). Finite elements in computational electromagnetism. Acta Numerica, 11, 237-339.
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VARIOUS OPERATORS AND TENSORS

de Rham complex

0 —— C=A0 — @, goopt L, T peopn 0,

with 3D vector proxies

grad

0 c>® C*® @RS <, cogRS v, oo N

Maxwell, Navier-Stokes



BERNSTEIN-GELFAND-GELFAND (BGG) COMPLEXES

V = R3: vectors S = R3*3 symmetric matrices T = R3*3traceless matrices

sym traceless

» Hessian complex:

hess curl div

0 —— C*® — C¥®S — C*QT — C*°®V — 0.
hess = grad grad
plate problem ((hess*) hess = div div hess = A2, biharmonic), Einstein-Bianchi formulation,
> elasticity (Calabi, Kroner, Riemannian deformation) complex:

0 — C®eV %, cogs nc, cogs W, cogy — 0.

def := symgrad, inc := curloT o curl,incg:=V x g x V.
linear elasticity, defects, linearized curvature...
» divdiv complex:

0 — s C® VY coou ¥ o g dvd noo

devo := o — Ltr(o)/ deviator

adjoint of Hessian complex
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There are infinitely many BGG sequences, which may contain operators of arbitrarily high order.
conformal deformation complex
0 —— C*@R3 &9 gog(SNT) =% c* g (SNT) &% C* @R —— 0.

cot(g): linearized Cotton-York tensor, third order curl operator
gravitational wave unknowns: transverse-traceless (TT) tensors, i.e., traceless, symmetric, divergence-free

conformal Hessian complex

sym curl

0 c devhess oo @ (SNT) L8 o> @ (SNT) L4 oo » 0.

Applications in general relativity:

» Beig, R., & Chrusciel, P. T. (2020). On linearised vacuum constraint equations on Einstein manifolds.
Classical and Quantum Gravity, 37(21), 215012.

BGG construction (in the above setting):

> Arnold, D. N., & Hu, K. (2021). Complexes from complexes. Foundations of Computational
Mathematics, 21(6), 1739-1774.

> Cap, A., & Hu, K. (2023). BGG sequences with weak regularity and applications. Foundations of
Computational Mathematics, 1-40.
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SKETCH OF DERIVATION: COMPLEXES FROM COMPLEXES

Step 1: connect two (or more) de Rham complexes

0 R3 8% Rax3 cwl, paxa dv, p3 g
_mSkV V 2VSV
0 — RE B2, gaxe el paxa _dv, pa g
Su = u” —tr(u)l, bijective
Step 2: eliminate as much as possible
0 R3 &% gk o, g3 _dv, ps g
,mV % QVSV
0 R3 &9, p3x3 e, g o dv,ps g

S: symmetric matrix, K: skew-symmetric matrix
Step 3: connect rows by zig-zag

sym grad
7

0 N R3 S curl N

s —dv, R3 0.

Conclusion: the cohomology of the output (elasticity) is isomorphic to the input (de Rham)
Inspired by Bernstein-Gelfand-Gelfand (BGG) resolution (B-G-G 1975, Eastwood 2000,
Cap,Slovéak,Soucek 2001, Arnold,Falk,Winther 2006)
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EXAMPLES: FORM-VALUED-FORMS

0 —— A0V 9 Aptv-1 1 s Alt™T — 0

y y s"%'

0 — A% — 9 At N d . Alt™ — 0

where Alt"Y .= Alt/ @ AltY

SIJM(V(M 7Vi)(W1a , Wy— 1 Z( 1 V07 "7 7Vf)(vl7 Wy, - 7WJ—1)7

va?"'aviaW‘la"'

The S operators have a representation theory background (Lie algebraic cohomology)

,Wy—1 € R".
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3D EXAMPLES

R: scalar V:vector M: matrix S:symmetric matrix T: trace-free matrix

R

v curl )
e, W
0 grad curl . 0
0 grad curl 0
grad curl

~

Hessian complex:

0 y 0o hessy poo(s) —ly goo(T) 4V, ooo(V) —— 0.

biharmonic equations, plate theory, Einstein-Bianchi system of general relativity
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3D EXAMPLES

R: scalar V:vector M: matrix S:symmetric matrix T: trace-free matrix

grad curl

0 > 0
/\//_\y
0 > 0
7mskw hm%
0 grad curl div . 0
0 grad curl 0.

elasticity complex:
0 —— (V) -5 oo(s) ey oo(s) — co(v) —— 0.

elasticity, defects, metric, curvature
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3D EXAMPLES

R: scalar V:vector M: matrix S:symmetric matrix T: trace-free matrix

0 R grad \ curl \ div R

0 A% grad M curl M div

grald curd —diry
0 \Y% M M A\ > 0
v —t Wi
grad v curl v dv /T p N\
— "

~
o

\%

~
o

0 R

divdiv complex:

dev grad sym curl

0 —— C®(V) =EY goo(T) LY goo(s) IvdX oo 0.

plate theory, elasticity
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A DIFFERENT PICTURE: HOW TO CHARACTERIZE HIGH-ORDER TENSORS?

Young tableaux

. scalar
R: scalar field  V: vectors

. . S: symmetric matrix field T: tracefree matrix field
Symimn : 2-tensors/matrices :

L]

l l symmetrids.of Riemannian tensor R;;u R

‘ ) lgrad
— — d
de Rham A\ sym gra; S
(skew-sym tensors) — —
J{ l l lcurl lcurl
divdiv complex dev grad sym curl
- ‘ v = S
— e ldiv ldiv ldiv
V grad |

— — R 5 v ol y v, R
1 O \ T \

l J}[(‘53i;111 complex \L‘lnsti('it.\' complex|

Peter Olver, ’Differential hyperforms’ 1982.
Discretization: ongoing work with Gopalakrishnan, Schéberl.
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FOR EACH COMPLEX, CONSIDER VARIOUS KINDS OF SOBOLEV REGULARITY

Two basic classes:
» HY complex:

0 — HIN0 — Ly pa—ipt 9y 0 9N e )

where HIAK is k-forms with coefficients in H9.
> HA complex:

0 —— HNO —y pat 4y @ g o,

where HAK := {u € L2A\K : dku € [2AF+TY,

Sobolev spaces in terms of continuity: for piecewise smooth functions,
ueH! — wuecd!
we HNK <« tryr w continuous

(trace: traT := 57_, 7, boundary term from integration by parts (du, v) = (u,dv) + boundary term)

[ The cohomology of the above complexes is isomorphic to the smooth de Rham cohomology.

Proof: consequence of Costabel-MclIntosh’s results for the H9-complex.

Costabel, M., & Mcintosh, A. (2010). On Bogovskil and regularized Poincaré integral operators for de Rham

[ complexes on Lipschitz domains. Mathematische Zeitschrift, 265(2), 297-320.
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EXAMPLES

H9 complex: 0 , H3 &2, [H2]3 _cur, [H1]3 vz 40
HA complex: 0 H' %% Hicurl) — H(div) —5 12— 0

ueH? «— ueci’
w € H(curl) <= w x ncontinuous (tangential continuity)
v € H(div) <= v ncontinuous (normal continuity)

(infinitely) many combinations, e.g., Stokes complexes

0 —— H2 52 picurl) <, [H1)° 9, 2 g,

H'(curl) :={u € [H1]3 curlu € [Hqs} (p.w.smooth u: u continuous with curl u continuous);

0 —— H' £ H, (curl) - [H1)° 4, 2 o,

Hy(curl) :={v e L2 curlv e [H']® (v tangential continuity with all components of curl v continuous).
+
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ON THE CANONICAL FINITE ELEMENTS

» degrees of freedom = cochains (k-forms on k-cells)
» the incomplete Py polynomials

0 Py 2% [P+ x x [Po]P - [Po]® + xPo —HVs Py

~
o

extends abstract cochains to piecewise polynomials.
» C°, tangential continuity, normal continuity, discontinuous, respectively. Subspaces of

829, Hcurl) —s H(div) —v5 12— 0.

0 H!

» invented individually by Raviart, Thomas, Nédélec in 1970s-1980s.
Coincide with Whitney forms (Geometric Integration Theory, 1957)

A systematic construction exists, extending to any dimension and any polynomial degree.
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Periodic Table of the Finite Elements

=mz =m

=m:=: ==

s=T =T EET =B
g SRYE0 SpEE ;;!

Arnold, Logg 2014, SIAM news
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HIGHER CONTINUITY: 2D STOKES, A MOTIVATING EXAMPLE

» Stokes problem: construct V}, C [H1]”, Qp C L2, such that div V,, = Qp and inf-sup condition.
Puzzle of Scott-Vogelius ([CO?,]”—C*1T,_1) : 2D stable for r > 4, no “singular vertices”; 3D open.

X2 )
div
—_—

Scott-Vogelius pair is stable on certain meshes (Arnold-Qin 1992, Qin-S.Zhang 2007, S.Zhang 2008)
» dimension of spline spaces: dim(SkK(A)) =77
* k =1in R?: Billera, algebraic geometry and homological techniques,
® in general: open.

The two questions are related in a de Rham complex':

div

QO
>
~
o

0 —— C'spline -0 v,

For example, a necessary condition of exactness is the dimension count

dim(C" spline ) — dim( V) + dim Q4 = dim(N(curl)) = 1.

12D curl operator maps scalar to vector: curl u = (—d.u, d1u). Rotation of grad.
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THE CONNECTION INSPIRES...

SPLINE FUNCTIONS ON
TRIANGULATIONS

d

The spline literature provides a good start for complexes (as 0-forms). However, completing the sequences
is nontrivial. Below we review some general ideas and tools.
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GENERAL STRATEGIES: USE OR AVOID SUPERSMOOTHNESS

Supersmoothness is a subtle issue in constructing scalar (simplicial) splines:
Piecewise smooth functions + corners lead to automatic higher continuity .

LN,

» Sorokina, T. (2010). Intrinsic supersmoothness of multivariate splines. Numerische Mathematik, 116,
421-434.

C'(Tn) = C3(v)

» Shekhtman, B., & Sorokina, T. (2015). Intrinsic Supermoothness. Journal of Concrete & Applicable
Mathematics, 13.

> Floater, M. S., & Hu, K. (2020). A characterization of supersmoothness of multivariate splines.
Advances in Computational Mathematics, 46(5), 70.

\

Consequence on the construction of FEs/splines: either use supersmoothness as degrees of freedom, or
use macroelement split to avoid supersmoothness.

c? o o
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R

Refinements of a tetrahedron relative to one face: Worsey-Piper, Worsey-Farin, Alfeld, no split.
(each 2D face: Powell-Sabin, Clough-Tocher/Alfeld, no split, no split)

Lai & Schumaker 2007, Spline functions on triangulations. CUP

General experience: a complex usually has various versions with different subdivision. Finer refinement
requires less supersmoothness (rigorous theorems).

See Guzman talk.
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BACK TO THE STOKES EXAMPLE
smoothness of scalar splines propagate in the complexes

0 . 2 5 [H' -4 12— 0.

Supersmoothness as DoFs: Falk-Neilan 2013, leading to a new Stokes pair

ANEAA

Clough-Tocher split: Arnold-Qin 1992 (last two spaces), Christiansen-KH 2018

z z vurl ; ; le ‘

Guzman-Lischke-Neilan 2019: Powell-Sabin split (Stokes pair: S.Zhang 2008)

Several other examples exist.
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complexes relate existing results and lead to new.

2D Stokes (2013)

2D Stokes (2018)
2D Stokes (2020)
2D elasticity (2002)
2D elasticity (2022)
3D Stokes (2015)

3D Stokes (2020)

3D Stokes (2022)
3D elasticity (2020)

Argyris (1960s)
Clough-Tocher (1965)
Powell-Sabin (1977)
Argyris (1960s)
Clough-Tocher (1965)
Zénisek (1973)
Alfeld (1984)
Worsey-Farin (1988)
Alfeld (1984)

MKQ
.

T curl
0

—

K curl cur
Lcurte

Falk-Neilan (2013)
Arnold-Qin (1992)
Zhang (2011)

Arnold-Winther (2002), Hu-Zhang (2014)

Jo

hnson-Mercier (1978)
Neilan (2015)
Zhang (2005)
Zhang (2011)

Christiansen-Gopalakrishnan-Guzman-KH (2020)

5 .

E 3
=

div

E——

div

R

£
N
N

a diagram connecting splines (Lai-Schumaker book), fluids (Arnold-Qin 1992) and elasticity

(Johnson-Mercier 1978)
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GENERAL STRATEGIES: DIMENSION COUNT

K—1 K
. yk—1 d vk d NEVisn S .

a necessary condition for exactness is

zn:dim(vj) =0
j=0

Dimension count gives a hint guiding the construction.

r

Example: Falk-Neilan complex

dimension countis 6V + E — 2(3V + E+3T) — V + 7E. We have

(6V +E)—2(8V +E+3T)+(V+7T)=V — E+ T =1 = dimN(curl),

V: number of vertices, E: number of edges, T: number of triangles, and Euler characteristic used.
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GENERAL STRATEGIES: POINCARE OPERATORS

The first step to construct FE spaces is to have polynomial exact sequences on each simplex. How?

Poincaré operators:

di-1 d&
e -1 i Vitl

pi pitl

Pk . VK — VK1 satisfying null-homotopy property

dk—1 Pk + Pk+1 dk — Ivk,

Existence of Poincaré operators implies exactness:

du=0 = u=(dP+ Pd)u=d(Pu).
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Smooth de Rham complex: explicit forms known in differential manifold books (proof of Poincaré lemma,
integral operators along a path). Choosing path ~(t) = tx, for t € [0, 1], connecting 0 (base point) and x:

1 1 1
plu= / Uy - Xdt, p2v = / v x xdt, p3w = / 12 Wy xdt.
0 0 0

Sobolev de Rham complex: averaging the base point

r

Costabel, M., & Mcintosh, A. (2010). On Bogovskil and regularized Poincaré integral operators for de Rham
complexes on Lipschitz domains. Mathematische Zeitschrift, 265(2), 297-320.

\.

Smooth and Sobolev BGG complexes: follow the BGG steps

r

» Christiansen, S. H., Hu, K., & Sande, E. (2020). Poincaré path integrals for elasticity. Journal de
Mathématiques Pures et Appliquées, 135, 83-102.

» Cap, A., & Hu, K. (2023). Bounded Poincaré operators for twisted and BGG complexes. Journal de
Mathématiques Pures et Appliquées, 179, 253-276.

The above operators preserve polynomial calsses, implying exactness of polynomial complexes, e.g.,

the P, family: - —— P,_g AT LN P A oA

the P, family: .. —— P A1 4 PP AK o P AK 4 PEH1p K+ _de PAK 4 PRI AR
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GENERAL STRATEGIES: GEOMETRIC DECOMPOSITION AND BUBBLE COMPLEXES

Lagrange element (P,C°) =
cell bubbles (interior BB basis, vanishing on all faces)+ face bubbles (face BB basis, vanishing on all edges)
+ edge bubbles(vanishing at vertices) + vertex modes

PENANEANIAN

Similar decompositions hold for vector/tensor finite elements
(bubbles have vanishing trace, e.g., H(div)-bubbles have vanishing normal components).

7

Bubble spaces should form exact sequences.

Remark: Cohomology is only carried by the lowest order spaces.

===
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Idea 1.Explicit forms of bubbles can be used to prove exactness.

e.g., H(div) bubbles = ‘real’ bubbles (all components vanish) + fields tangent to the faces.
By = Mo e [Pro1]? + MNPty

Then show div : AgA1 s [CP,_3]2 + AN Pr_otj — Pr_q /R is surjective.
Idea 2.Each tensor Lagrange/BB basis has a normal-tangential decomposition.

e.g., for H(div), tangential bases are all bubbles. Normal bases on different cells should be matched.
%

P

continuous, continuous normal, and discontinuous.

For Idea 1, see, e.g.,
» Hu, J. (2015). Finite element approximations of symmetric tensors on simplicial grids in R": The higher
order case. Journal of Computational Mathematics, 283-296.
For Idea 2, see, e.g.,

» Chen, L., & Huang, X. (2021). Geometric decompositions of div-conforming finite element tensors. arXiv
preprint arXiv:2112.14351, 2.

» Hu, J., Hu, K., & Zhang, Q. (2022). Partially Discontinuous Nodal Finite Elements for H(curl) and
H(div). Computational Methods in Applied Mathematics, 22(3), 613-629.
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GENERAL STRATEGIES: DIAGRAM CHASE FOR BGG COMPLEXES

BGG complexes can be derived from de Rham. One can mimic the construction for FE/spline spaces.

A A

» . -
curl div
QR? ——— ®R? —_— ®R?
airy div
_— —_— ®R?

Challenge: To match the spaces, the input rows should have different regularity.
This approach requires a lot of spline complexes with various kinds of continuity as input.

Example:
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GENERAL STRATEGIES: TENSOR PRODUCT CONSTRUCTION

So far we focused on ‘splines on triangulation’. On cubical meshes, tensor product is a useful tool.
Idea: for 0-forms (scalars), approximate f(x, y) by u(x)v(y). Then extend this to a complex.

Example: 8’,’1‘,’,’22: degree p;q in x, p2 in y; smoothness ry in x, rpiny

gpPi— P2 ri—1,ro—1

p1,p2—1

| _ di _ _

0 — Sﬁ1,£2 cur ry,ra—1 div gp 1,p2—1 40
r171,r2

partial derivatives decrease degree and regularity by 1.

» Buffa, A., Rivas, J., Sangalli, G., & Vazquez, R. (2011). Isogeometric discrete differential forms in three
dimensions. SIAM Journal on Numerical Analysis, 49(2), 818-844.

» Christiansen, S. H. (2009). Foundations of finite element methods for wave equations of Maxwell type.
Springer.

de Rham complexes: Arnold,Boffi,Bonizzoni 2013

o N(IMm= P

oc€X(k;n)

n
0% ?,_5,.,4/)] T A - A O,

i=1

where
1, ief{o1, -0k},
6i,a =

0, otherwise.
higher form degree corresponds to lower polynomial degree (in a delicate way).
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For BGG complexes, one can either diagram chase or discover a general pattern of indices.

» Bonizzoni, F., Hu, K., Kanschat, G., & Sap, D. (2024). Discrete tensor product BGG sequences: splines
and finite elements. Mathematics of Computation.

> Arf, J., & Simeon, B. (2021). Structure-preserving discretization of the Hessian complex based on spline
spaces. arXiv preprint arXiv:2109.05293.

Examples in 2D: Input: Buffa,Rivas,Sangalli,Vazquez 2011 with various choices of indices

P1,P2— 1

f1 Jro—1
y

8P1 —11 »P2 grad 8P1 Y 2,p2 SP1 —11 ,02 11 . 27P2 11
rn—1,r 2 n—=1r- ro 2 —
0 — gpipe—t | T Sp1—1,pz 1 gpipe2 — 3P1—1»P2 —2 0

p1—1,p2
grad _ _ _
0 —— 8 ——————— ( B ) — gl 0

ri,ro—1 ri—1,rn—1 r,rp—2 rn—1,n—2
—2,p0—1
0 gP1—1pe—1 grad 521—2,52—1 ro Sm 2,0—2 0
rn—1,rn—1 p1—1,p2—2 —2,p-2 '
rn—1,rn—2

This only works for form-valued forms (Hessian, elasticity, divdiv complexes), not the conformal complexes!

If the indices of the skew-symmetric part match, then the trace does not; and vice versa. There seem to be

fundamental challenges in discretizing S N T matrices.
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STATE-OF-THE-ART AND OPEN QUESTIONS

Ultimate goal: any complex (de Rham, BGG), any dimension, any form degree, any continuity, any
polynomial degree

de Rham complexes - what has been done?

dimension | form degree continuity polynomial degree
classical splines mostly 2 or 3 0 high low in most literature
classical FEEC, periodic table any any low any
smoother de Rham (Stokes) | mostly 2 or 3 any some high continuity any
Chen-Huang, Hu-Lin-Wu 2,3 any any any
tensor product any any any (certain pattern) any

So far, only ‘classical FEEC, periodic table’ and tensor product construction are relatively systematic
theories. (low continuity and cubical grids significantly simplifies the question)

cohomology is only known for the classical FEEC complexes and some special Stokes complexes.

BGG complexes - what has been done?

what complexes dimension \ continuity
Hess, elas, divdiv 2,3 low
Hess, elas, divdiv 2 any
tensor product form-valued-forms any any (cerntain patterns)

KH-Lin-Shi 2023 | conformal deformation 3 low
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QUESTIONS

In principle, any question for scalar splines can be asked for vector- or tensor-spaces. Example:
> dimension
» supersmoothness
» basis and fast algorithms
» Bernstein-Bézier techniques (Alfeld-Sorokina 2016)
>

New questions raised in complexes:
» construction
» proving cohomology
» constructing commuting quasi-interpolations (‘bounded cochain projections’ in FEEC term)
» construccting local exact sequences (find bubbles which are exact in top dimension)
> ..
A concrete example: H(div, S) from linear elasticity

symmetric matrix field o, each component o is p.w. polynomial of degree k, o - n continuous across
boundary of cells (n is the normal vector).

Dimension? Likely C° supersmoothness at vertices? ...
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GENERALIZING FINITE ELEMENTS: BACK TO DE RHAM’S CURRENTS

Question: The Whitney forms are elegant and useful. Are there tensor/BGG versions?
Use currents (measures, Dirac delta), rather than functions.

Geometric Measure Theory , graphics
(Codimensional geometry: A point cloud represents a probability measure; curve cloud, surface cloud...)

3-form

0-form

Figure 2.4 Differential k-forms can be represented by clouds of codimension-k
geometries.

Exterior Calculus in Graphics: Course Notes for a SIGGRAPH 2023 Course. Wang, S., Nabizadeh, M. S., & Chern, A. (2023)

Grundichren des mathematschen Wisenschaien 266
4 Sres of Comprebensive Studies in Mhematc

Georges de Rham
Differentiable Manifolds

SpringerVerag Belin Heidelberg New York Tokyo
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(FINITE ELEMENT VERSIONS: DISTRIBUTIONAL ELEMENTS (CURRENTS))

nf(V

Perspectives:

» Finite Element perspective: dual, complex of degrees of freedom
» Discrete Exterior Calculus perspectlve complex on dual meshes

"\mul @\ rot v

» Fluid perspective: point vortex, vortex lines... (delta on codim 2)
(V.1.Arnold,B.Khesin, Topological methods in hydrodynamics)

Braess, Schdberl 2008

» Applications: equilibrated residual error estimators (Braess, Schéberl 2008)

» Cohomologies, analysis: Licht 2017 (double complex)
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3D ELASTICITY COMPLEX: REGGE CALCULUS

Christiansen 2011: Regge calculus = finite elements

metric (singular) curvature
def / inc / div
V4
[co2,? Regge Regge* [CO2,]
P CeleTe @ Te 20 €y
0,1 1,1
Alt — Alt —
s Alt?2 s Alt32

Regge calculus: Metric given by edge lengths; curvature as angle deficit
(quantum relativity, discrete geometry).

Regge finite element: Metric: p.w. constant sym matrices, fe e - g - 1o as dofs. Curvature: distributional.

nD: Lizao Li (2018 Minnesota thesis), nonlinear curvature with Regge elements (Berchenko-Kogan,Gawlik
2022, Gopalakrishnan,Neunteufel,Schéberl,Wardetzky 2022, Gawlik,Neunteufel 2023)
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CANONICAL CONSTRUCTION IN 3D (KH-LIN-ZHANG 2023)

I)u aic deltas

Alt90

Alt? Alt3

l

(singular) curvature
Alt0!

I N ==L/

[coz)? Regge

LiIsT

Alt%2  —  Al"2 Alt22

% &
@ =L
\ inc / / div
functions = h s:i. ee”
Alt?? Alt®? " e

o>
> euby

\BS
dLv dn
S

—
—

1/ A02 V dc\gmdj/%svmc
—s  Alt3S A

Patterns for discretization for Alt’ @ Alt/ (j-form-valued i-forms):

» cohomology is correct, isomorphic to continuous version

» j < j: functions, i > j: Dirac deltas, transition happens at BGG zig-zag

» (i,f) dualto (j, ); (i,) dualto (n—i,n—j), Hessian complex dual to divdiv, elasticity ‘self-adjoint’
» function part (i < j): j-form-valued /-forms discretized on i-cells  attaching a j-form to an /-cochain

» delta part (i > j): j-form-valued i-forms means attaching j-forms to dual i-cells

A periodic table for tensors in progress.
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SUMMARY

SPLINE FUNCTIONS ON
TRIANGULATIONS
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