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THE MODEL AND QUESTION

1 Themodelandquestion . . . . . . . . . . .. i it e e e e e e e e e



Cosserat elasticity (micropolar continuum): Cosserat brothers, Théorie des corps déformables (1909).

introduce a pointwise rotational degree of freedom, in addition to displacement in classical elasticity

Images: Left: José Merodio, Raymond Ogden, “Basic Equations of Continuum Mechanics”; Right: Elena F. Grekova, “Introduction to the mechanics of Cosserat media”

Related to Eringen: micropolar continua.
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MOTIVATION

Granular material

o ) Images: Wikipedia
Even larger scales: ice floes (grains = icebergs), asteroid belts of the Solar System (grains = asteroids)...

Size effects Classical elasticity & plasticity: geometrically similar structures have same properties.
But realistic materials may not. Cosserat models incorporate grain sizes.
Cosserat models also inspired important mathematical developments, such as the concept of torsion.

Cartan’s attempt at bridge-building between Einstein and the Cosserats — or how translational curvature became to
be known as torsion. Scholz, E. E. EPJ H (2019).
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GOVERNING EQUATIONS

Energy in the linear model:  u: displacement (vector), w: rotation (axial vector)

with

1 1
glosserat (1) 1= / (EH gradu — mskwcquC1 + EH grad w||%2 — (fy,u) — (fw,w>> dx
Q

1 +
= /Q (EH sym grad uH% + e |[1/2curlu — w||2 + %H sym gradw||2

+7_5|ycur|w|y2+3|ydikuz) dx/(fu,u>+<fw,w) dx,
4 2 Q

Ci(e) =2usyme + Atrel+ pcskwe = C(e) + e skwe, C(e) =2usyme + Atrel,
Co(e) =(y+ B)syme+atrel+ (y — B)skwe

3a+ [+

= (v + B)devsyme + trel+ (y — B)skwe,

where C is the classical elasticity tensor with Lamé parameters i and A, u. is the Cosserat coupling
constant, and «, 3, v are additional micropolar moduli.

The additive coupling term grad v — mskw w comes from linearization of a (multiplicative) action of Lie
group element exp(mskw w) € SO(3) on deformation .

[ Open: numerical methods robust with all the parameters.
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WEAK AND STRONG COUPLING

A closer look at the energy:
1 1
ecosrs(uw) i= [ (Gllsymeradulf + i [1ocurlu — wl + 3| gradwll, ~ () = (£} ok
Q

» 1. = 0: uand w decoupled. Solve a standard elasticity problem for u.

> e = oo: “perfect coupling” - forcing w = %curl u. The leading term becomes
| grad wl|%, = §| grad curl u||%,. Mixed 4th-2nd order problems: couple stress model.

So parameter-robust method for Cosserat should also solve couple stress models.

Existing work: Mixed finite element methods for linear Cosserat equations. Boon, W. M., Duran, O., &
Nordbotten, J. M., arXiv preprint (2024).

pe >0, pie — 0.
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A DIFFERENTIAL COMPLEX POINT OF VIEW

2 A ddifferential complex pointofview. . . . . . . . .. ... .. o e



DE RHAM COMPLEX (3D VERSION)

grad

0 —— C®(Q) 225 Cco(R3) —, oo(Q;R3) 2 ¢>(Q) —— 0.

d® :=grad, d':=curl, d?:=div.

» complex property: d o d¥=' =0, = R(d*") c N(d¥),
curlograd = 0 = R(grad) C N(curl), divocurl =0 = R(curl) C N(div)

» cohomology: 7% := N(d¥)/R(d*— 1),
A0 .= N(grad), 1 :=N(curl)/R(grad), 2 := N(div)/R(curl)

> exactness (contractible domains): N(d¥) = R(d* "), ie.,, dfu=0 = u=d* v
curlu=0=u=grad¢, divv=0= v =-curl.

In higher dimensions,
dk

k—1
I VS ANV A+

AK - differential k-forms,  d* : exterior derivatives
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A DIFFERENTIAL COMPLEX POINT OF VIEW

From complexes to PDEs

Formal adjoint of operators:

grad® = —div, curl®* =curl, div¥ = —grad.
Jogradu-v = — [, udivv+bound. term, [,curlu-v = [, u-curlv+ bound. term
(gradu,v) = (u,—divv), (curlu,v) = (u,curlv)

Formal adjoint of de Rham complex:

0+ C®(Q) < co(@R%) <« co(R3) <& c*(Q) «— o.

d; = —div, df :=curl, dj:= —grad.

7132



A DIFFERENTIAL COMPLEX POINT OF VIEW

connections to PDEs: Hodge-Laplacian problems.

(i + did¥)u=r.
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A DIFFERENTIAL COMPLEX POINT OF VIEW

connections to PDEs: Hodge-Laplacian problems.

(i + did¥)u=r.

grad
0 — C™(Q) —= C®(%R?) C=(Q;R3)
—div

Hodge-Laplacian problem:
—divgradu = f.

Poisson equation.

Variational form (energy):

1
inf — 2_ | fu.
inf 2|V /Qu

C=(Q)
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A DIFFERENTIAL COMPLEX POINT OF VIEW

connections to PDEs: Hodge-Laplacian problems.

(i + did¥)u=r.

grad

url
0 Cx(Q) 7 C¥(URY) T C®(QRY)
—div curl

Hodge-Laplacian problem:
—graddivv + curlcurlv = f.

Maxwell equations.

Variational form (energy):

1
inf —(|| curl v|> + || div v||?) — / fv.
4 2 Q

C=(Q)
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A DIFFERENTIAL COMPLEX POINT OF VIEW

connections to PDEs: Hodge-Laplacian problems.

(i + did¥)u=r.

rl div
0 c=(9Q) CR(QUR3) 7 CF(URY) = C=(Q)
curl —grad

Hodge-Laplacian problem:
curlcurl v — graddivv = f.

Maxwell equations.

Variational form (energy):
1
inf —(|| curl vH2+Hdivaz)—/ fv.
v 2 0
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A DIFFERENTIAL COMPLEX POINT OF VIEW

connections to PDEs: Hodge-Laplacian problems.

(i + did¥)u=r.

div
0 C>(Q) C>=(Q; R3) C®(Q;R%) — C>*(Q) — 0.
— grad
Hodge-Laplacian problem:
—divgradu = f.

Poisson equation.

Variational form (energy):

1
inf|yvUH2—/ fu.
u 2 Q



HOw TO DERIVE MORE COMPLEXES: THE BGG MACHINERY

Bernstein-Gelfand-Gelfand (BGG) machinery: Derive complexes from de Rham complexes; carry over
de Rham results.  (B-G-G 1975, Cap,Slovak,Soucek 2001, Eastwood 2000, Arnold,Falk,Winther 2006)

BGG diagram: complexes connected by algebraic operators in a (anti)commuting diagram (dS = —Sd)

k—2 k—1 K+1
—_—s Vv _—— Vv % _

k—2 k—1 N k+1
e W ~ 9w w

Two complexes can be derived from the above BGG diagram:
twisted complex:

gk=1  _gk—1 gk gk
Vk71 0 gk—1 Vk 0 dk Vk+1
—— ) ) o ()

BGG diagram: eliminating components connected by S*
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BGG diagram in 1D:

Twisted complex:

S—

BGG complex:

oy 6]

Energy of Hodge-Laplacian:

d 2 d >
HEW— olle, + Ha‘ﬂ”cg

Energy of Hodge-Laplacian

> 0. d?
HWWHZC-

Euler-Bernoulli

Timoshenko

Images: Wikipedia
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3D ELASTICITY: ELASTICITY (KRONER, CALABI) COMPLEX

. ) Kroner’s continuum description of dislocations/defects,
displacement formulation internal stress

/

0— 0oV 4 ,poowgg 1 owgg WV L, oogy_ 49

displacement strain (metric) stress (curvature) force

intrinsic elasticity (Ciarlet et al.) Hellinger-Reissner principle of elasticity

V :=R3vectors, S :=R3%? symmetric matrices

defu:=1/2(Vu+Vu"), (defu)j =1/2(iu; + du;).

incg:=VxgxV, (incg)!=e"odsgy.
divv:=V-v, (divv);=du;.
g metric = inc g linearized Einstein tensor (« Riem = Ric in 3D)

incodef = 0: Saint-Venant compatibility
divoinc = 0: Bianchi identity
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SKETCH OF DERIVATION: COMPLEXES FROM COMPLEXES

Step 1: connect two (or more) de Rham complexes

0 R3 B Rax3 cwl, paxa dv, p3 g
_mSkV V 2VSV
0 R3 %, gax3 cwl, paxa dv, p3 g
Su = u” —tr(u)l, bijective
Step 2: eliminate as much as possible
0 R3 grad S+K curl R3X3 div E&S v 0
_mV y ZVV
0 RS &%, gaxs el g e dv, @3 g

S: symmetric matrix, K: skew-symmetric matrix
Step 3: connect rows by zig-zag

symerad o _curl |

>

0 > RS

s _dv, R3 0.

Conclusion: the cohomology of the output (elasticity) is isomorphic to the input (de Rham)
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A CLOSER LOOK AT THE DERIVATIONlZ TWISTEP COMPLIIEXES
grac cur awv

All ® R:i Al ® R:i R AQ ® R:} R A3 ® R:&

BGG diagram »1V / V

grad curl div

A() ® Rif , Al ® Rii AQ ® Riﬁ AJS ® Rif

AO ® R3 Al ® R3 AZ ® R3 A3 ® R3
grad mskw curl - div -vskw
twisted complex grad curl div

A() ® R:i Al ® R:i A2 ® R:{ A:i ® RI{

I-fo Riemann-C:

C
Cosse th defec

A0 R;; deff Al® RZS ns
® E—

BGG complex \‘—/ inc
Rier

div

(AQR)NS — A3 @R?

In 1D, 2D, 3D:
» twisted complexes: Timoshenko beam, Reissner-Mindlin plate, Cosserat elasticity
» BGG complexes: Euler-Bernoulli beam, Kirchhoff-Love plate, standard elasticity.

Mechanics interpretation of BGG construction: eliminating microstructure variables (e.g., pointwise

rotation) or torsion from twisted complexes via cohomology-preserving projections.
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PART OF A LARGER PICTURE... MECHANICS V.S. COMPLEXES V.S. GEOMETRY

Trace complexes: dimension reduction

. . . BGG (elasticity) . L.
Cosserat (micropolar) elasticity ———— 'classical elasticity

lrconvergence Jr—convergence

BGG (hessia
Reissner — Mindlin plate % Kirchhoff plate

[ convergence: The Reissner-Mindlin plate is the T -limit of Cosserat elasticity. Neff, P, Hong, K. 1., & Jeong, J. M3AS, (2010).

High order forms: continuum defect theory

Idea (Kréner, Nye etc.): strain in standard elasticity e = sym grad(u) satisfying inc e = 0 (Saint-Venant
compatibility). Defects lead to incompatibility: use e as a basic variable, and in general inc e # 0 describes
defects.

Other types of microstructures (dilation? rotation+dilation? Lie groups?), nonlinear and curved (shell)
theories etc. Towards an “Erlangen program for generalized continuum’.
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FINITE ELEMENT METHODS

3 Finite element methods



USE FINITE ELEMENTS FROM A COMPLEX...

A model problem for couple stress (continua with microstructures)

—curl Arotu — graddivu=f

22
2

18
16
14
12
1

08
06
04
02

scalar finite elements

R 2 8 8

* FEs in a complex

model problem for generalised continua, classical finite element goes wrong.
KH,Q.Zhang,J.Han,L.Wang,Z.Zhang (2022) Spurious solutions for high order curl problems, IMA.
More examples in FEEC book/papers.

Things work when the we discrete the entire complex and preserve the cohomology.
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GENERALIZING FINITE ELEMENTS: BACK TO DE RHAM’S CURRENTS

Obtaining parameter-robust schemes for Cosserat: discretizing the entire BGG diagram. However,
conforming discretization requires redundant d.o.f.s and may not be robust with thickness.

A more canonical discretization: use currents (measures, Dirac delta), rather than functions.

Geometric Measure Theory , graphics
(Codimensional geometry: A point cloud represents a probability measure; curve cloud, surface cloud...)

0-form

Figure 2.4 Differential k-forms can be represented by clouds of codimension-k
geometries.

Figure: Exterior Calculus in Graphics, Stephanie Wang, Mohammad
Sina Nabizadeh and Albert Chern; ACM SIGGRAPH 2023 courses.
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SOLVING PDES USING DISTRIBUTIONAL ELEMENTS

[ General principle: evaluating Dirac delta only on continuous functions.

Poisson (trivial example):
/VU-VV = /fv, Vv € Lagrange.

What if we view it as (—Au, v) = (f,v)?

» u e C° grad u € Nédélec (normal components may not be continuous).
» div (in the sense of distributions): grad u — Dirac delta on faces.

» Au = divgrad u (as a delta) can be paired with v (single-valued on faces!).
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ELASTICITY AND TDNNS

—divC 'symgradu = f.

Weak form: find o € X, u € Vp, such that

(0,7)c + (divr,u) = 0, Vr,
(dive,v) = —(f,v), Vv

u: displacement (vector); o: stress (symmetric matrix)

Question: how to choose ¥, and V}, (such that the pair (divo, v) = /Q div o - v satisfies inf-sup condition?

> displacement formulation: u € C% o€ C™', — [,7:symgrad(u). locking
» Hellinger-Reissner principle: u€ C~', o € C" (o - n continuous), JodivT - u. difficult to construct
» TDNNS (Pechstein, Schéberl 2011): u € C! (u - t continuous), ¢ € C™ (n- o - n continuous)

dive =3 rc z[0]mdF: tangential delta, (divo, v) = 3" rc 7 [[o]m - v well defined.

Robust with thickness/anisotropy (3D TDNNS restricted to face is a 2D TDNNS).

Tangential-displacement and normal—-normal-stress continuous mixed finite elements for elasticity. Pechstein, A., &
Schéberl, J., M3AS (2011)
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STOKES AND MCS

Introduce a stress-like variable ¢ = Vu (irace-free):

—dive + Vp
o
V-u

Weak form: (o, 7) — (7, Vu) = 0. Motivation: using H(div) element to discretize u (u

Then Vu =Yg z[u] ® ndr. Pair (Vu,7) = 3 pc 7 [c([u] ® n) : 7 well defined if ¢ - 7 - nis continuous.

T : piecewise constant trace-free matrix, n- 7 - nas d.o.f.s.

A mass conserving mixed stress formulation for the Stokes equations. Gopalakrishnan, J., Lederer, P. L., & Schéberl, J., IMA

(2020)

f,
Vu,
0.

- n continuous).
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BACK TO COSSERAT: TWO SCHEMES

Idea of Scheme 1 (MCS):
grad

— mskw
grad
= m

Y

u : Lagrange (displacement formulation). To avoid coupling locking (robustness with jic):

space of w should be large enough to contain —vskwogradu = —curlu =  discretize w in RT.

Then grad w is a distribution (the MCS situation!). We introduce m (trace-free, tn-continous) to
accommodate grad w.

Idea of Scheme 2 (MCS-TDNNS): Displacement formulation still suffers from volume locking (Lamé const
— %) as in standard elasticity. Further introduce TDNNS idea to fix this.

grad
u——- o

_ msV
grad
w —

u € Nédélec, introducing o with nn continuous to accommodate grad u.

ml
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Problem 1 (MCS and MCS-TDNNS mixed methods for linear Cosserat elasticity)
Find (u,w, m) € [Lagk]® x RTK~" x MCS*~" solving the Lagrangian

1
L™(u,w, m) = 2/Q (H gradu — mskwwH%1 - ||mH202_1) dx — (div m, w) o (divy — f(u,w, m) — minmax.

uw m

Find (u,w, m, o) € Nedk x RT¥~" x MCS¥~' x HHJ* solving the Lagrangian
i

2

— (div m, w) py(divy+ — f(u,w, m, o) — rmp max.

1 .
L™ (u,w,0,m) = /Q (—HO‘H%_1 + 2uc||1/2curlu — cu||2 — ||mH202_1> dx — (div o, U) o (curl)*

The MCS and MCS-TDNNS formulations are based on the following diagram:

grad grad
u u—— o'
_ mSk% B mSV
grad / grad ,
w > nr, w m.

MCS¥ := {op € [PX(T)]?*® : (ng x on, nE) is continuous across all faces F € F}.

HHI* := {on € [PX(T):3 : ohnene == (onnF, nfF) is continuous across all faces F € F}.
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WELL-POSEDNESS

Theorem 1

The mixed form is well-posed and there holds with vy, = 2j¢(1/2 curl up, — wp) the following stability estimate

Imalliz + llonllz + 1valle + Nuallv, + lwnllw, +/ric /2 curlup — whll 2 < C([1full 2 + [[£]l.2),

where C > 0 is a constant independent of jic and the norms || - ||r, || - ||v,, and || - ||w, are given by
1 1

lul}, =D Isymerad ullfery + 5 > ITunl I2(r). Il = Il

TeT FeF
1
2 2 2

lwlifn, = D lgradwliZegry + + D e Iy

TeT FeF

Proof: Use MCS and TDNNS inf-sup results. Track inf-sup constants with properly scaled norms -
independent of ..
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Theorem 2 (Convergence)

Let (u,w, m, o) be the exact solution of linear Cosserat elasticity and

(Un, wh, Mp, o, yp) € Nedl x RTA=T 5 MCSK—" x HHJ¥ x RT*~" the discrete solution with homogeneous
Dirichlet data on the whole boundary. Assume for0 < | < k — 1 the regularity u € [H'(Q)]® N [H*1(T)]3,

we [H QPN [HF (DR, me [H(QPRN[HH(D)]P*3, and o € [H'(Q)]° N [HF1(T)]3*3. Then there
holds the convergence estimate

lu=unllv, + llw — wallw, + M — mall 2 + llo = onllz + |7 = nllr
1
\/EH'YHH’(Q))v

lu=tnllv, + llon = I wllw, + |m = mall iz + [lo = onll2 + Iy = lir

< el ([|ull s ) + ]l () + M) + ol +

1
< ch'™! (HU||H'+2(Q) + [|ml| g1 () + ol pe @) + T H’Y||H/+1(Q)),
C

NS

where the discrete norms || - ||v, and || - |w, are given by

1 1
w3, = 3 lsymerad uliZery + 4 3 b Begry, ol = 3 leradwliary + ¢ S Ilwidliage)
TeT FeF TeT FeF

Second estimate: superconvergence for w.
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MCS FOR COUPLE STRESS PROBLEM

Limit pec — oo: couple stress problem.

Find (up, mp) € [Lagk]® x MCSK~" solving the Lagrangian (with appropriate boundary conditions)

. 1 1
Llc\j/[célgleSt “(up, mp) = 2/ (H sym grad up||2 — Hmh\|202,1> ax — §<dlv Mp, curl Un) p(div)*
Q

— f(up, mp) — min max.
Up mp
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NUMERICAL TESTS: CYLINDRICAL BENDING OF PLATE

Length L = 20, height H = 2, and thickness t = 20. E = 2500, v € {0.25,0.4999} (and p = 2(1—’;)

A= (1+V)E(+2y))’ e = 0.5u, a = 21 L2, B =2; L2, and v = 4y L2, with L, = 1 the characteristic length. A
bending moment M, = 100 is applied on the left and right boundary. The exact solution is prescribed by

My xy My ( 2 v 2) x ( 2 Vo op
_ _ S — H?),
“=br R YT e\ T ) T A\ T,
B M, x
YT T DR
where D = #ﬁ’;) The resulting non-zero stress components are
E Myy vE Myy . B My . My

= - = =7 my, — — My, — —
O xx 1—V2D—|-’)/H’ Ozz 1—1/2D+’YH’ xz D—f—'yH’ zx Dt~H
and no volume forces apply.
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CONVERGENCE RATES. LEFT: v = 0.25. RIGHT: v = 0.4999.

U= el 1 /1| Uexc] 11

llw = wes [l 1/ lwes [

1070.5 L

10~"® | —e—Lag
—— M

—M-T

102

108 10*

coupling ndof

10°

—eo—Lag
—— M

1072 | - M-T

*\\

102

108

10
coupling ndof

10°

U = Uex]| 1 /|| exe |1

llor — Wexl k1 /| wex |

10—1A5 —— Lag

1071

—— M

—M-T

102 108 10*

coupling ndof

10°

T T T TTH

—e—Lag
—— M

e MT

I N N

Lo

102 103

10*
coupling ndof

10°
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CONVERGENCE RATES. LEFT: v = 0.25. RIGHT: v = 0.4999.

0 * i -
10 Cqoth 1
Y = L ]
= = r ]
& 10702 1 s i ]
= = f ]
) =
= 10- ]
bé? 10704 1 & 100§ ]
| \ [ 1
S ) 1
= 1006 4 = —e—Lag 1
e M 1
Ll Lol Ll Ll 1071 +M_T Ll il il R
102 103 10 10° 102 108 104 10°
coupling ndof coupling ndof
[ T oo T
= o " .
£ E
E 5 0 ]
] ] g ]
& IS b 1
| I 5 R
i i —e—Lag 1
— _2 e M —
Ll Lol Lol 1 \HHE\ 10 +M-T Ll Lol Lol 1 \\\H‘:r
102 108 104 108 102 108 104 105
coupling ndof coupling ndof
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NUMERICAL TEST: TORSION OF A CYLINDER

uw=15A=1,uc=5,and a = § = v = 0.5. Exact solution known.

|

Figure. Geometry of torsion of cylinder example.
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CONVERGENCE: DEGREE k = 1

" .y
_ -1 L i
T 1005 IR ]
B 3
= =
= =
5 3
107! 1!
§ § 10_2 - Lag =
= = M
. —— M-T
1015 () | o oMy
102 10° 10* 10° 102 108 10* 10%
ncdof ncdof
100 T T T T T T T T
F O 1
% R E
o =5
3 3
B : B
< 10" = Ny
E —— Lag \\\ é: 1
= M =
—— M-T -
oy O L
102 108 104 108 102 108 104 10°
ncdof ncdof

Figure. Convergence rates for cylinder torsion with k = 1. For M' and M-T' &, is used instead of w,.
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CONVERGENCE: DEGREE k = 2

| 10-2L - |
T =
3 3 I
= < 107%¢ E
= ElE [
S 3
| | [
s s 10 .
1075 E
41072 Tl 4
s E 103} E
~ 4 T~al
= |2 _—
° & yoal RN il
| | E b \ E|
E § —eo— Lag \‘\<\\—\\\ 1
- 1= .. 5|— M ~ ]
1072 MLT T . ]
--- O(H?) o 1
10° 10* 10°
ncdof ncdof

Figure. Convergence rates for cylinder torsion with k = 2. For M? and M-T? &, is used instead of wh,.
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ROBUSTNESS

0L . oo ]

1071 R N . . ] Fo. 1
i R |- Lag 10° . |- Lag 10°
=z I 1= M10° 510,1j 1o me°
= 1 |——MT100 | = i |—+=M-T 10
= i | = Lag10®| = i | = Lag 10
> e M0 | D 0 1= M10°
S 1011 1o MTI0% | s 1072 ) 1 MT10°8
= i |+ Lag 108 | = I |-+ Lag 108
i 1 M 108 i ] M 108
— 1 M-T 108 I S e MeT 108

Lol Lol Lol Lol Lol 10—3 1l Lol Ll Ll T

102 10%  10* 10 10° 102 108 10* 10°
ncdof ncdof

Figure. Results robustness test for yc/p € {1,102, 108} with methods of order k = 1 (left) and k = 2 (right).
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Summary

» connections between continuum modelling, geometry and differential complexes (and thus analysis

and numerics).

» discretizing models by discretizing entire complexes.
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