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MOTIVATION: COMPATIBLE DISCRETISATION
FUNDAMENTAL QUESTION: HOW TO DISCRETISE A SYSTEM WITH MORE THAN ONE VARIABLE?

/Vu-Vvdx— pV-vdx = f-vdx, Vv,

/V-uqu = 0, Vq.
Velocity continuous P4, pressure discontinuous P3
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Velocity continuous P, pressure discontinuous P+

NoException Traceback (nost recent call last)
Cell I n[?] \mn
t ("V.ndof =", V.ndof, ", Q.ndof =", Q.ndof)
K

> 6 gfu = SOINESEOKESIX)

cell mm line 14, in (x
u.Set(uin, definedon=nesh. Baundaries *intet*))
o) esipataat g
——> 14 inv = EEALS lmrst(frndnfs-o( FreeDofs(), inverse="unfpack")
15 gf.vec.data += inv *
17 Draw(gfu)

NgException: UnfpackInverse: Numeric factorization failed.

Velocity continuous P, pressure discontinuous P1, on Alfeld split

Numerical results obtained by NGSolve.
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There may be no visible clues to tell spurious solutions.

—curl Arotu — graddivu = f.

scalar finite elements “intrinsic” FEs

model problem for generalised continua, classical finite element converges to a wrong solution.

» K. Hu et al. Spurious solutions for high order curl problems, IMA Journal of Numerical Analysis (2023).

A A2 A3 Vi As As A7 Ag

Intrinsic FEs  0.000000 0.593379 0.595179 1.801959 2.837796 4.458048 4.492200 5.463407
Scalar FEs 1.947637 2.579732 2.731537 3.781333 5.542562 7.373284 7.571471 7.797919

Table. Eigenvalues A to As.

Many more examples available.
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MOTIVATION: STRUCTURE-PRESERVING DISCRETISATION

Fundamental question in plasma physics: given initial data, what does the system evolve to?
heating of solar corona, plasma equilibria (magnetic configurations) etc.

B;—V x (uxB)=0,

j=V x B,
u=rjxB.
Energy decay Helicity conservation
1g\|B||2 = —7||B x j||?. 53{,,, =0, with Hp:= /A-de, B = VxA.
2dt dt
Figure. Helicity-preserving scheme Figure. CG scheme (non-preserving)

» Topology-preserving discretization for the magneto-frictional equations arising in the Parker
conjecture, M. He, P. E. Farrell, KH, B. Andrews, arXiv (2025).
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Computation is used for computing gravitational wave templates , investigating magnetic configurations
for fusion devices , designing quantum computing devices etc.

[ How confident are we in what we computation?

Key: many facets of differential complexes and cohomology, appearing in many problems in different forms.
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Computation is used for computing gravitational wave templates , investigating magnetic configurations
for fusion devices , designing quantum computing devices etc.

[ How confident are we in what we computation?

Key: many facets of differential complexes and cohomology, appearing in many problems in different forms.

k—1 k
Sy k1t A vk 9y ykt

0 —— c2(2) 2L o0 R3) L o0, R%) IV, o) —— 0.
d® :=grad, d':=curl, d?:=div.
» complex property: d* o d*=' =0, = R(d*") C ker(d¥),
curlograd = 0 = R(grad) C ker(curl), divocurl =0 = R(curl) C ker(div)

» cohomology: % := ker(d¥)/R(d*~"),
HO = ker(grad), ' :=ker(curl)/R(grad), #? := ker(div)/R(curl)

> exactness: ker(d¥) = R(d*"),i.e.,dku=0 = u=dk v
curlu=0=u=grad¢, divv=0= v =curly.
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SOLVING EQUATIONS IS HOMOLOGICAL ALGEBRA: PHILOSOPHICAL CONTEMPLATION

Solving equations: given g € Gand . : W — G, find w € W, such that
Z(w)=g.
» Existence: surjecitvity of & : W — G <= exactness of

W-—-25G—-0

» Stability: for Vg € G, 3w € W, such that Zw = g and |w|w < C||9| -

inf sup \29)

>a>0
9cGwew |Wllwllglla

» Uniqueness: injectivity of : W — G <= exactness of

o— w-“5a
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SOLVING EQUATIONS IS HOMOLOGICAL ALGEBRA: PHILOSOPHICAL CONTEMPLATION

Solving equations: given g € Gand . : W — G, find w € W, such that
Z(w)=g.
> existence, uniqueness, stability : exactness + norm control

0 w -2, G 0

well-posed algorithms <= schemes preserving cohomology

Other concepts, such as compatibility conditions and rigidity can be obtained in similar ways.
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SOLVING EQUATIONS IS HOMOLOGICAL ALGEBRA: PHILOSOPHICAL CONTEMPLATION

Solving equations: given g € Gand . : W — G, find w € W, such that
Z(w)=g.

» Compatibility conditions when existence does not hold:
exactness of

0o— W -—-“256-25Q 0.
For any g satisfying g = 0, 3w € W, such that Zw = g. Rigidity when uniqueness does not hold:

exactness of
0 Vv — W

Zw = g, wis unique up to elements in V.
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FLUIDS AND PLASMA: COMPUTATIONAL TOPOLOGICAL HYDRODYNAMICS

1 Fluids and plasma: computational topological hydrodynamics . . ... ... ... .......



STOKES PAIRS AND COMPATIBLE DISCRETISATION

The Stokes problem:

/Vu‘Vvdx—/vadx

/V-uqu

Continuous Level (PDEs):
Well-posedness via inf-sup condition:

div vqg dx
inf sup flviq >v>0
GEL?/R yeh) [vllallalle

From exact de Rham complex:

0 — VOEX 1o a2 div s

velocity pressure

~

= /f-vdx, Y,

= 0, Vq.

Discrete Level (Numerics):
Stability via discrete inf-sup:

inf sup deVthth

>v>0
€ vpeVy [ Vhllaillanll 2

Achieved by discrete de Rham complex:

grad

curl div
0— - > Vp > Qp

velocity pressure

~



CONSTRUCTING FINITE ELEMENT STOKES PAIR
A LONG-STANDING CHALLENGE

Construct velocity space Vi, ¢ H' and pressure
space Q C L2 such that div V, = Qp.

SPLINE FUNCTIONS ON
TRIANGULATIONS

Alfeld Split: Arnold-Qin 1992, Christiansen-KH 2018
» Continuous P», discontinuous P d
» ' scalar spline on this triangulation
> Differentiating it yields the Po-P¢ pair
» Ensures div V= Qp

.{A

Qn i

Christiansen-KH 2018: Systematic construction of \\ i i
Stokes complexes via scalar spline differentiation. \
Christiansen, S. H., & Hu, K. (2018). Generalized finite element systems for smooth differential w P
forms and Stokes’ problem. Numerische Mathematik, 140, 327-371.
8/28
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IDEAL MAGNETIC RELAXATION
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Eugene Parker

Parker hypothesis (Still Open)

For “almost any initial data”, the magnetic field develops tangential discontinuities (current sheet)
during the relaxation to static equilibrium.

Finer structure: helicity [MHD: Woltjer’s invariant, ideal fluid: Moffatt (giving the name)]

Hm ::/A-de.

Describe knots of divergence-free fields. Conserved in ideal MHD. wﬂ\g
Q
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A TOPOLOGICAL MECHANISM

Arnold inequality (V.I. Arnold 1974): helicity provides lower bound for energy

‘/A'de

Proof. Cauchy-Schwarz | [ A- Bdx| < ||A||;2||B||,2 + Poincaré inequality ||A]|;2 < C||V x Al| 2.

< C/|B|2dx

NJ <; |

5 A

N

&W& it

Vladimir Igorevich Arnold

Knots provide topological barriers preventlng energy decay. This mechanlsm is lost in computation if

algorithms do not preserve helicity.

Respectto Time & iy, Normaimg, and div with Respect to Trme

Patrick Farrell
Topology-preserving discretization for the magneto-frictional equations arising in the Parker conjecture, M. He, P. E. Farrell, KH, B. Andrews, arXiv
(2025).

,! > ::Q
7

Mingdong He Boris Andrews
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HOW TO PRESERVE HELICITY: DISCRETE DE RHAM COMPLEX
» Raviart-Thomas (1977), Nedélec (1980): Early finite elements

» Bossavit (1988): Differential forms and complex
» Hiptmair (1999), Arnold, Falk, Winther (2006): Systematic Finite Element Exterior Calculus

Classical Whitney forms

()— —_— —_— —_— —_
4

En, Hp By

> Faraday’s law 9;B; + V x E, = 0 holds precisely = 2(V - B;) = 0.

» Introducing projection H, = Q2By, = (un X Hp, Q2Bx) = 0.

First finite element method for MHD preserving V - B = 0, energy & helicity:
KH,Hu,Ma,Xu 2016, KH,Ma,Xu 2017, KH,Lee,Xu 2021, Laakmann,Hu,Farrell 2023.
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TOWARDS Computational Topological Hydrodynamics

A subject back to Kelvin, Helmholtz, and more recently by Arnold, Moffatt, Sullivan...
limited applications due to lack of topology-preserving algorithms

a

The Lord Kelvin  Hermann von Helmholtz ~ Vladimir Arnold Keith Moffatt Dennis Sullivan

Direct computational assessment of Parker’s hypothesis brings a number of chal-
lenges. Foremost among these is the requirement to precisely maintain the mag-
netic topology during the simulated evolution, i.e., precisely maintain the mag-
netic field line mapping between the two line-tied boundaries. ... In the following
sections, two methods are described which seek to mitigate against these difficul-
ties. However, in all cases the representation of current singularities remains
problematic. ..

— The Parker problem: existence of smooth force-free fields and coronal heating, Pontin, Hornig,
Living Rev. Sol. Phys. 2020.

Applied Mathematical Sciences

Vladimir . Amold
Boris A. Khesin

Topological
Methods in
Hydrodynamics

&) Springer
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MANY OPEN PROBLEMS AND OPPORTUNITIES
TowARDS Computational Topological Hydrodynamics

Fluid Cohomology

Theorem 3.5 ([Arn10]) The number of linearly independent stationary k-

forms is not less than the k" Betti number by, of the manifold M.

Fluid Cohomology

Taylor’s Conjecture

Phasma Py QOLS). vl 81, 905810608 © Cambridge Universy Pres 2015 1
o TS0

Magnetic relaxation and the Taylor conjecture

H. K. Moffatt}

Department of Theorcial Physcs.
Wilberforce Road, Cambidge CB3 OWA, UK

(Received 23 August 2015 revised 30 October 2015; ceepted 30 Oxtober 2015)

A onc-dimensional model of magnetic relaxation in a_pressurcless low-resistivity
plasma s considered. The initial two-component magnetic field b(x, 1) is strongly
elical, with non-uniform helicity densiy. The magnetic pressure gradient drives a
velcity ek that i disspated by vscosity. Relasation aceurs in o phass The it
& rpid il phse in ich the magnetc corey drops sharly and the magnic
e becomes approximately unforh the helicky Gensiy 1 redsrbued Gurng
s phase bt evai non i, ibough he tal iy remains elavely
consant, a Taylor stat is not estabiished. The second phas is one of slow diffusion.
e e sy i ek, hough sl drven by et weak novuniformiy
of magnetic pressure; during this phase, magnetic cnergy and helicity decay slowly
and st consit i trough the combined efects o pressre salinion sd e
resistivit. The density ficld. initally uniform, develops rapidly (in association with
the magnei k) durin the il phase, axdconinues 19 cvlv, dveloping sarp
maxims, throughout the difusive sage. Finally i s proved it if the TeuSUHLY 8
zero, the spatial mun (¥ xB)/6%) s an invariant of the governing one-dimensional
induction equatior

Symmetry Reduction

Simons Collaboration on Hidden
Symmetries and Fusion Energy

Meetings

Simons Hour Talks

MHD, hidden symmetries, Lie group

Self-organisation

Plasma dynamlcs

Figures: by Chris Smiet; From “Scientific Visualization of 3-dimensional Optimized Stellarator Configurations,” Donald A.

Stellarator Optimization

3D field design

And More...

Emerging topics

Spong, Oak Ridge National Laboratory.
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SOLID MECHANICS: AN ERLANGEN PROGRAMME

2 Solid mechanics: an Erlangen programme



Relaxed micromorphic Eringen-Claus dislocation
12 dof (u, P), well-posed*

o non-symmetric o =C.e

dislocation

12 dof (u, P), well-posed*

o symmetric, o =C.e.
isotropic: 6+3 parameters
no coupling: 4+3 parameters
constitutive variables:

isotropic: 7+3 parameters
no coupling: 5+3 parameters
constitutive variables:

A JUNGLE OF MODELS

e=Vu—P elastic distortion
ec = sym(Vu — P) elastic strain
ym P micro-strain

Curl P micro-dislocation

ep =sym P micro-strain
&=~ Curl P micro-dislocation

e

“constrain”

non-positive . P~ (L4 A
curvature energy t::’nz"f:‘:“"g “constrain A€ s0(3)&]

N . P~ symP N L P~(1+A orthogonal
Defect line simplicity projections

skew(Vu — P
incorporatedd
orthogonal

Microstretch model in

Symmetric model of Teisseyre

ieloonti
9 dof (u,sym P), not well-posed* dislocation format

7 dof (u, A,¢), well-posed*
Ce
isotropic: 4+3 parameters
no coupling: 3+3 parameters
constitutive variables:
e=Vu— (¢-1+ A) elastic distortion
¢ =1 micro-strain

Ve¢ = V(¢-1) gradient of micro-strain
o=~ Curl A micro-dislocation

projections
o symmetric o = C.ec

o non-symmetric, o

isotropic: 6+1 parameters
no coupling: 4+1 parameters
constitutive variables:

e =sym(Vu — P) elastic strain

Dislocations p=sym P micro-strain

a=—Curl P micro-dislocation

“constrain”
Pw(l “constrain”
orthogonal P L “constrain”

projections

P~ A€ s0(3)

Microvoid model in
dislocation format

4 dof (u,¢), well-posed*

o symmetric o =C.e.
isotropic: 3+1 parameters
no coupling: 2+1 parameters
constitutive variables:

(b) Edgc (c) Edgc Linear Cosserat model
6 dof (u, A), well-posed
o non-symmetric, o =C.e

Disclinations

isotropic: 3+3 parameters

no coupling: 243 parameters

e = sym(Vu— (1) elastic strain
v ‘D constitutive variables:

p = sym(C-1) = ¢ micro-strain
Ve¢ = V(1) gradient of
‘micro-strain

/" Classical microvoid model Classical microstretch model
4

dof (u,¢), well-posed 7 dof (u, A, ¢), well-posed

e = Vu — A elastic distortion
— Curl A micro-dislocatio

(e) Twist (£) Twist

o symmetric o =C.e. o non-symmetric, Ce
e . isotropic: 441 parameters isotropic: 644 parameters
G-Disclinations no coupling: 3+1 parameters no coupling: 3+4 parameters
constitutive variables: constitutive variables:
& = sym Vu total strain e=Vu— ((-1 + A) elastic distortion
&p = sym(C-1) = ¢-1 micro-strain ¢ =1 micro-strain

Ve¢ = V(1) gradient of Ve¢ = V(¢1) gradient of micro-strain
AN micro-strain _/ a=—CurlA micro-dislocation

Figure 3: Relaxed micromorphic, microstretch model, Cosserat model, microstrain model and microvoid models

(h) Shear (i) Stretch (j) Stretch+rotation in dislocation format

Voterra’s seven distortion (defects) models and generalisations linear micromorphic continuum
Sun, X. Y. et al. (2017). Continuous description of grain boundaries using crystal defect fields: the example of a 3 1 0/[0 0 1] tilt boundary in MgO. European Journal of Mineralogy.
Neff, P,, Ghiba, I. D., Madeo, A., Placidi, L., & Rosi, G. (2014). A unifying perspective: the relaxed linear micromorphic continuum. Continuum Mechanics and Thermodynamics.
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[ Question: clarify structures behind the models to guide reliable and parameter-robust computation?

From here, we enter a world of tensors.

stress, strain tensors, dislocation density, disclination density in continuum mechanics,
metric, curvature (scalar, Ricci, Weyl, Riemann, Cotton...), torsion in differential geometry etc.
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[ Question: clarify structures behind the models to guide reliable and parameter-robust computation?

From here, we enter a world of tensors.

stress, strain tensors, dislocation density, disclination density in continuum mechanics,
metric, curvature (scalar, Ricci, Weyl, Riemann, Cotton...), torsion in differential geometry etc.

A special case: differential forms (fully skew-symmetric tensors), exterior derivatives

d& B ' div&
00— —_— —_— —_— —_—
\

Whitney forms : the 2nd generation finite elements for forms (vectors) , following the 1st generation for scalars

Standard practice in computational electromagnetism and software.
e.g., Amazon’s software for quantum computing hardware design

Question: What is the canonical discretisation for tensors — the 3rd generation finite elements ?
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DIFFERENTIAL STRUCTURES IN ELASTICITY

Elasticity (Calabi, Kréner) complex

d . .
RM —S— ¢ gR® 28, cogRds €, cogRIS v, cogR® —— 0
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DIFFERENTIAL STRUCTURES IN ELASTICITY

Elasticity (Calabi, Kréner) complex

[embedding R® — R3 J [change of metric (strain) J

sym grad s &RSXS L C> ®R3><3 i) COO®R3 —— 0

- o0
RM ————— C®QR3 o s

p————— e= (Vo) (pV) -1

e = 0 iff ¢ is a rigid body motion.

Linearisation: e = sym grad u, in terms of displacement u(z) = () — Z.

E
| -
//L-_.._.__ >

dx —d& =di-e-dz
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DIFFERENTIAL STRUCTURES IN ELASTICITY

Elasticity (Calabi, Kréner) complex

metric (strain) [ Riemann curvature ]

sym grad C>® R3><3 inc C>® ® RSXS div C® ® R3 0

RM — C™ @ R3 8% s s
e ————— Riem(e)
Strain tensor (change of metric) e = (Vo) - (¢ V) — I satisfies Riem(e) = 0.

Defect theory: Kroner et al. used violation of compatibility conditions to model defects and incompatibility

Linearisation: Saint-Venant compatibility condition ince := V x e x V = 0.

- Jj ou s /N
Bernhard Riemann  Ekkehart Kréner

de —di =di-e-dt
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DIFFERENTIAL STRUCTURES IN ELASTICITY

Elasticity (Calabi, Kréner) complex

[ curvature / stress J covector / force

d in _ iv _
RM — C*@R3TEF 0o gRYS "y 02 o R3S — Ty ¥ RS —— 0

o V.o

Cauchy stress tensor o balances load divo = f with o = Ae (Hooke’s law);
incompatibility causes internal stress inc e.

Robert Hooke Augustin-Louis Cauchy i____ )
(Christ Church PDRA room)

de —di =di-e-dz
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A NONLINEAR COMPLEX

cohomology not well defined, but exactness is. Exactness corresponds to important theorems.
Observations: KH, Nonlinear elasticity complex and a finite element diagram chase Springer INDAM Series (2024).

exactness: rigidity
two motions induce same metric iff up to RM
. . C ©—0*go— g . .
rigid body motion ——— map R® to R3 = > metric Ried , curvature

exactness: fundamental thm of Riem geometry
metric has vanishing curvature iff metric is Euclidean

Challenges for discretising nonlinear complex even in 1D:

2
0 Cx® 0 O » 0 exact: Vw,3Ju = /w, s.t., w = U~
not work for polynomials!
2
0 Py u—u ?;_1 .0

Algebraic geometric issues. Relevant to preserving nonlinear constraints.

[ Question: tools for studying nonlinear complexes? discretisation?
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COMPLEXES FROM COMPLEXES

Generating, analysing and discretising linear (deformation) complexes: complexes from complexes
» Douglas Arnold, KH, Complexes from complexes, Foundations of Computational Mathematics (2021) 1

Step 1: connect two (or more) de Rham complexes

grad

0 s RS R3x3 _curl, p3x3 _dv , p3 s 0
D
0 , R3 &9, pax3 _curl, pax3 _div, pa s 0

S*: algebraic operators, connecting components of vectors/matrices

"Frontiers of Science Award 2025
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COMPLEXES FROM COMPLEXES

Generating, analysing and discretising linear (deformation) complexes: complexes from complexes
» Douglas Arnold, KH, Complexes from complexes, Foundations of Computational Mathematics (2021) 1

Step 2: elimination

0 RS 8%, g4 g o, p3x3 _div ' 0
_mV /' gvsky
0 RS &2, gax3 _aurl, g > 0

S: symmetric matrix, K: skew-symmetric matrix

"Frontiers of Science Award 2025
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COMPLEXES FROM COMPLEXES

Generating, analysing and discretising linear (deformation) complexes: complexes from complexes
» Douglas Arnold, KH, Complexes from complexes, Foundations of Computational Mathematics (2021) 1

Step 2: elimination

0 R3 grad S+K curl . 0
mV / ZVSkV
0 Rg grad curl . 0

S: symmetric matrix, K: skew-symmetric matrix

"Frontiers of Science Award 2025
18/28



COMPLEXES FROM COMPLEXES

Generating, analysing and discretising linear (deformation) complexes: complexes from complexes
» Douglas Arnold, KH, Complexes from complexes, Foundations of Computational Mathematics (2021) 1

Step 3: connect rows by zig-zag

symgrad o curl |

>

0 > RS

cu'r]i‘ S div R3 0.

Conclusion: cohomology of the output (elasticity) is isomorphic to the input (de Rham)

Analytic results follow: Poincaré—Korn inequalities, Hodge decomposition, compactness...

Inspired by the Bernstein-Gelfand-Gelfand (BGG) construction (B-G-G 1975, Cap,Slovak,Sougek
2001, Eastwood 2000, Arnold,Falk,Winther 2006, Arnold, KH 2021, Cap, KH 2023)

"Frontiers of Science Award 2025
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COMPLEXES FROM COMPLEXES

Generating, analysing and discretising linear (deformation) complexes: complexes from complexes
» Douglas Arnold, KH, Complexes from complexes, Foundations of Computational Mathematics (2021) 1

Step 3: connect rows by zig-zag

symgrad o curl |

>

0 > RS

cu'r]i‘

s —dv, R 0.

Conclusion: cohomology of the output (elasticity) is isomorphic to the input (de Rham)

Analytic results follow: Poincaré—Korn inequalities, Hodge decomposition, compactness...

But, is it purely mathematical?

"Frontiers of Science Award 2025
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SOLID MECHANICS: AN ERLANGEN PROGRAMME

[ embedding/displacement J

sym grad

R3 S curl N
T
curl . S div R3

[ curvature/stress j covector/load

Riemann, Kréner, Cauchy, Hooke

19/28



SOLID MECHANICS: AN ERLANGEN PROGRAMME

[ embedding/displacement ]

grad

R3

/
grad

R3><3

N

metric/strain

curl

V-

R3 -

L)

Cosserat brothers

7

curl S div

[ curvature/stress ]

Cosserat continua: microstructures (rotation, stretch etc.)

Observations: A. Cap & KH, BGG sequences with weak regularity and applications. FOCM (2024).
Leading to first parameter-robust scheme for Cosserat model: A.Dziubek, KH, M.Karow & M. Neunteufel, arXiv (2024).

> RS

covector/load

19/28



SOLID MECHANICS: AN ERLANGEN PROGRAMME

[ embedding/displacement J

coframes

torsion 2-form
dislocation

R3x3

grad
RS
SO
grad
RS

Elie Cartan Arash Yavari

Observations:
cohomology. arXiv (2023).

R3><3

.

[connection 1—form]

curvature/stress
disclination

Riemann-Cartan Manifolds (B,V,G)
VG=0T#0R%0

div ., R3
82
div y RS

Riemannian Manifolds (B,V, G)
VG=0,T=0R#0

Weitzenbéck Manifolds (B,V, G)
VG=0,T#0,R=0

Alain Goriely
Cartan’s bridge between Einstein and Cosserat brothers — torsion

Flat(BEuclidean)Manifolds (B,V, G)
VG =0T=0R=0

Yavari and Goriely, ARMA (2012)

covector/load

Riemann-Cartan Geometry of Nonlinear Dislocation Mechanics,

Christiansen, KH, & Lin, Extended Regge complex for linearized Riemann-Cartan geometry and
BGG construction is thus cohomology-preserving elimination of microstructures!



SOLID MECHANICS: AN ERLANGEN PROGRAMME

In this way and more broadly, we develop structure-aware and computation-friendly modelling via complexes .
microstructures, defects, dimension reduction, contact mechanics, porous media...

Our ‘BGG construction’ is much broader. e.g. A generalisation to form-valued forms (double forms a ala Cartan)

k— k+
th=10-1 d Altht—1 Altht1E-=1 d Altht2.—1

_ Alth=1.0 971 Ak ALkt AN p k2.

Sk V SV Sk+y

k
(k1,041 4} Altkot+1 L) AJkt14+1 4} Alght2eet

Sk 167 S’y SK+V

K1
) Alth—1.6+2 d Ak t+2 Alghkt16+2 70 A k2,042 o

AltF? = AltK ® AltY: ¢-form-valued k-forms
differential forms: (k, 0) metric, strain: (1, 1)  curvature, stress: (2,2) torsion: (2, 1)

- —— Al

- — Al
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SOLID MECHANICS: AN ERLANGEN PROGRAMME

In this way and more broadly, we develop structure-aware and computation-friendly modelling via complexes .
microstructures, defects, dimension reduction, contact mechanics, porous media...

Our ‘BGG construction’ is much broader. e.g. A generalisation to form-valued forms (double forms a ala Cartan)

k— k+
th=10-1 d Altht—1 Altht1E-=1 d Altht2.—1

sk‘/ / SV

o — Al

ak— gk+
Dy AlR —> Altht 9 ALk T Akl
Sk V SV Sk+y
k
L Aqk1e 4} ALkt L) Altht1.6+1 4} Althr2e+1

Sk— V suy SHV

, Algh—10+2 470 A qikt42 Alht1e42 a0 A k2,42

AltF? = AltK ® AltY: ¢-form-valued k-forms
d|fferent|al forms: (k,0) metric, strain: (1,1)  curvature, stress: (2,2) torsion: (2, 1)

[ Questions: Canonical discretisation of double forms?
20/28




TOWARDS A FINITE ELEMENT PERIODIC TABLE FOR TENSORS
KH, TING LIN. Finite element form-valued forms (I): Construction. ARXIV: 2503.03243 (2025)

—1,—1
Alt SN
o A0
N AL —
4
— ALY —
AT — AN —
4
—
A2 — Al —
Al0® — A3

classical Finite Element Exterior Calculus

Nédélec, Raviart—-Thomas, Whitney, Bossavit, Hiptmair, Arnold, Falk, Winther...

Dirac deltas Braess-Schoberl
A00 ALO ngd A2 "15 A0 5

/v grad /v curl / div /v distributional Whitney
S o /

— ALY — AI20 — ALY

Al —

Alt?2 —
Alt?2 —
v

—

— A2 — AltSS

Hessian
Hu-Lin-Zhang
Alt3!
elasticity
Regge-Christiansen
functions
Alt32
{ellan- H(llmdllll Johnson (HHJ)
TDNNS (Pechstein,Schéberl )
A1t3x3 Hu-Lin-Zhang
RN grad arl - Y Whitney forms
kS - [ = / e .
- 44 - [~ Al N
- —
PREEN Alt™ A0S ALS A23
Nédélec Raviart-Thomas

Periodic Table of the Finite Elements

1150118 1

A
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TOWARDS A FINITE ELEMENT PERIODIC TABLE FOR TENSORS
KH, TING LIN. Finite element form-valued forms (I): Construction. ARXIV: 2503.03243 (2025)

Dirac delta Braess-Schoberl
ALO n/§' A0t ABO g

_curl | _div distfibutional Whitney
Alg=h 1 ‘ / / ‘
-2
»

Zos ARYY 5 ART0 — AIR0 — ALY

div Hessian
AS0 % /% /W Hu-Lin-Zhang
A1t1,1 A1t2’1 R A1t3’1 mtn ( ngular) curvature
Alt01 Al /v elasticity
/ Regge-Christiansen
v functions
—  Alt2Z2 — Al32 X
pINLR:N
A1t0,2 Alt1 2 A1t2’2 R dwdw {ellan- [h rrmann-Johnson (HHJ)
v TDNNS (Pechstein,Schéberl )
Alt3 3 Hu-Lin-Zhang
A®S o AT — AP A

Whitney forms

LTo Al

Nédélec Raviart-Thomas

distributional de Rham complex (currents).

=} ‘\)
Dietrich Braess  Joachim Schéberl

Braess, Schoberl 2008: equilibrated residual error estimator
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TOWARDS A FINITE ELEMENT PERIODIC TABLE FOR TENSORS
KH, TING LIN. Finite element form-valued forms (I): Construction. ARXIV: 2503.03243 (2025)

Dirac deltas Braess-Schisberl
0.0 A0 nys! A0 tpe A3O g

WA
. .. gl g > div distributional Whitney
Alt=1— N ) 4
NEERS ALL A2t

-

o AOY o A0 A0 AR

A\ e > v, = Hessian
AS0 -\ S\ /»v Hu-Lin-Zhang
v X ~ N
— A" — AT — Al .
AlST — AR -
/ function|
Alt2‘2 Alt3'2 Regge ogge” [co2)*
cIheT o,
S divdiv
0,2 1,2 2,2 A02 AL2 422 Mg A lellan-Herrmann-Johnson (HHJ)
A2 s Al s A2 wred /NS el 5/ N
/ — 7% Sz ./ _.-X"] TDNNS (Pechstein Schisber )
Alt3*3 = ra) Y " ; Y’ :‘ Hu-Lin-Zhang

Whitney forms

Al AT — ANBS o AR /v rad /v Y
[N) T SN T Lo

Tos o AltH 00 - -

Nédélec Raviart-Thomas

Christiansen’s interpretation of Regge calculus as finite elements

Regge calculus (quantum & numerical gravity) :
edge length as metric, angle deficit as curvature /5

9
Tullio Regge  Snorre Christiansen

Regge finite element : piecewise constant symmetric tensor field
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TOWARDS A FINITE ELEMENT PERIODIC TABLE FOR TENSORS
KH, TING LIN. Finite element form-valued forms (I): Construction. ARXIV: 2503.03243 (2025)

Dirac deltas
. A0 ALO ng8! A20¢.5¢

\\ >y cul
Aot /W /?7 A

I AO0 s A0 ALERO0

Braess-Schoberl

A3O g

distributional Whitney

— AltS
s div
Hessia
AR %?% /}& /W
— AN — AT —  AltS! (Finglar) curature
Alt0’1 Alt1’1 div elasticity
’ ’ 7R Regge-Christiansen
1/ functions
—  Alt??2 — A2 o
X, b
livdi
A1t0,2 Alt1’2 A1t2’2 3 ‘d.i\'dn"\'( {ellan- H(‘ :‘m:\nm Johnson (HH.J)
Ve ~ /.- TDNNS (Pechstein,Schiberl )
Alt3 3 Y’ :‘ Hu-Lin-Zhang
0,3 1,3 2,3 3,3
Alt Alt Alt Alt —— _grad curl Whitney forms
e /," /—;/‘ /‘/‘l
Tos o AltH I - o
Nédélec Raviart-Thomas
™
. .gs . ags KW F
Hessian complex, unified structures identified. \=;

Kaibo Hu, Ting Lin, Qian Zhang. Distributional Hessian and divdiv complexes on triangulation
and cohomology. SIAM Journal on Applied Algebra and Geometry (2025).

Ting Lin Qlan Zhang
21/28



TOWARDS A FINITE ELEMENT PERIODIC TABLE FOR TENSORS
KH, TING LIN. Finite element form-valued forms (I): Construction. ARXIV: 2503.03243 (2025)

Dirac deltas Braess-Schéberl
ALO g8 A0t A0 g

curl _div distributional Whitney
At ‘ ‘ / / 5

KTos o A% — A0 — A0 — Al

Alt00

Y Hessian
—_ Hu-Lin-Zhang
A1t1 )1 A1t2’1 Alt3‘1 ( ingular) curvatur
0.1 1.1 elasticity
Alt” —  Alth — / Regge-Christiansen
v functions
—  Alt??2 — A2
. b,
dvdiv
Alt92 — At —  Alt22 — d“d“ Tellan-Hefrmann-Johnson (HHJ)
/ TDNNP (Pechstein,Schiberl )
N \“3_3 Hh-Lin-Zhang
0,3 1,3 2,3 3,3
Alt?® — A" — A5 —  AltS N Whitney forms

P

Nédélec Raviart-Thomas

divdiv complex , dual to Hessian complex.

TDNNS for elasticity (Schéberl, Sinwel 2007), Hellan-Herrmann-Johnson
(HHJ) element for plate.

Implemented by J.Schéberl in NGSolve with relativity applications ﬁ ﬁ
KH, Ting Lin, Qian Zhang. Distributional Hessian and divdiv complexes on triangulation \2

and cohomology. SIAM Journal on Applied Algebra and Geometry (2025). Astrid Pechstein ~ Joachim Schdberl o1 /08



TOWARDS A FINITE ELEMENT PERIODIC TABLE FOR TENSORS
KH, TING LIN. Finite element form-valued forms (I): Construction. ARXIV: 2503.03243 (2025)

Alt0-0

Alt%!

Alt0-2

Alt0-3

-z
- ALOO
—
v
— Al —
— AlY —
v
—
—  Alt"?  —

— Al — Alt2S

— A" — Al20

AlBT — AT

Al22 —  Al32
Alt22 —»
v

—  AI3®

— A

IEAEIN

Patterns, Symmetries, Duality.
functions (classical finite elements) v.s. Dirac measures (currents).

Georges de Rham

—  Alt®

Dirac deltas

Braess-Schoberl

ALO g0

functins

A7V t8¢ A3 g

ﬁ L

( ingulr) curvature

223

curl div ‘ distril

edelec

Raviart-Thomas

any dimension, any degree.

Hesfian
Hu-Lif§-Zhang

lasficity

-Cfristiansen

divdiv
ellan-Herrr

TDNNS

Classical Finite Element Periodic Table (last row) is the special case of the
generalised Table where all spaces are finite elements in the classical sense.

ey forms

tional Whitney

ann-Johnson (HHJ)
(Jm hstein,Schoberl )

-Ifn-Zhang

21/28



GENERAL RELATIVITY: NUMERICAL ANALYSIS AS A TOOL FOR DISCOVERY

3 General relativity: numerical analysis as a tool for discovery



GENERAL RELATIVITY: NUMERICAL ANALYSIS AS A TOOL FOR DISCOVERY

( spacetime geometry J

Gap =

& Tap

Numerically solving the Einstein equations (numerical relativity) has

been used to compute templates of gravitational waves and investi-
gate new theories of gravity.

Connection from metric:

k= u(agei 9ge; _ 09 )
g oxi oxi oxt”
Riemannian tensor from connection:

ory oIy

Y ‘ ¢
R = X Oxk + Iin Ik — Lin Iy -

Ricci tensor is the trace of Riemann: Rx = Ffe,-ek;
Einstein tensor is Ricci with modified trace:

1
Gik = Rk — §Rgik7

Pedro G. Ferreira
THE PERFECT THEORY

A Century of Geniuses and the Battle
Over General Relativity

*

Pedro Fereirra
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( spacetime geometry J

Gap =

& Tap

Numerically solving the Einstein equations (numerical relativity) has

been used to compute templates of gravitational waves and investi-
gate new theories of gravity.

Connection from metric:

k= u(agei 9ge; _ 09 )
g oxi oxi oxt”
Riemannian tensor from connection:

ory oIy

) y) ¢
R = X Bxk + I Ik — T I

Ricci tensor is the trace of Riemann: Rx = Ffe,-ek;
Einstein tensor is Ricci with modified trace:

1
Gik = Rk — §Rgik7

Pedro G. Ferreira

THE PERFECT THEORY

A Century of Geniuses and the Battle
Over General Relativity

*

How do we trust our computation?
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GENERAL RELATIVITY: NUMERICAL ANALYSIS AS A TOOL FOR DISCOVERY

3+1 Einstein equations (ADM form):
[y: 3-metric in 3+1 decomposition, «, 3: lapse & shift (gauge freedom)]

Oy = —2a K+ Vi + Vi, evolution of 3-metric
Ok = —ViVja+a(PR;+ KKj — 2 Ki K')
+ B'ViKj + KV + KiVi55, evolution of extrinsic curvature (embedding)
H:=®R+ K — KK =0, Hamiltonian constraint
M = V(K" —+'K) = 0. momentum constraint

A long time of darkness...

ADM: Richard Arnowitt, Stanley Deser,
Charles W. Misner

Figure: 3+1 Orthogonal and Conformal Decomposition of the Einstein Equation and the ADM Formalism for General Relativity, Suat Dengiz. arXiv (2021)
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GENERAL RELATIVITY: NUMERICAL ANALYSIS AS A TOOL FOR DISCOVERY

3+1 Einstein equations (ADM form):
[y: 3-metric in 3+1 decomposition, «, 3: lapse & shift (gauge freedom)]

Oy = —2a K+ Vi + Vi, evolution of 3-metric
Ok = —ViVja+a(PR;+ KKj — 2 Ki K')
+ B'ViKj + KV + KiVi55, evolution of extrinsic curvature (embedding)
H:=®R+ K — KK =0, Hamiltonian constraint
M = V(K" —+'K) = 0. momentum constraint

A long time of darkness...
until The 2005 Breakthrough in Binary Black Hole Mergers by Frans Pretorius g

(role of hyperbolicity was recognised). A lot of progress later, contributing to the
first detection of gravitational waves in 2015. However,

> little “numerical analysis”,

» next generation of gravitational wave detectors require stability and precision
beyond current reach.

. ) . . . Frans Pretorius, Fundamental Physics
Challeges: nonlinear constraints, tensor symmetries, singularity... Breakthrough Prize 2017

Figure: 3+1 Orthogonal and Conformal Decomposition of the Einstein Equation and the ADM Formalism for General Relativity, Suat Dengiz. arXiv (2021)
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GENERAL RELATIVITY: NUMERICAL ANALYSIS AS A TOOL FOR DISCOVERY

Einstein—Bianchi system: L.Andersson, V.Moncrief 2024, H.Friedrich 1981

1
E,‘j = ROI'O/-, Bj,' = EN 177,'hkR0jhk.

Tensor version of Maxwell (linear version):

B:+VXxXE = 0,
E;—VxB = 0,
V-B = 0,
V-E = 0.

E, B: Transverse-Traceless (TT: symmetric S, trace-free T, divergence-free) tensor fields
encoded in BGG conformal complexes

0 c>® dev hess C® ® (S n T) symcurl C™® (S n T) divdiy C>® 0

E B

Vincent Quenneville-Bélair, PhD thesis 2015 (U.Minnesota): Finite Element Exterior Calculus formulations

Open: fully encoding tensor symmetries, discretise conformal complexes, nonlinear formulation and
constraint-preservation, boundary conditions...
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DISCRETE DIFFERENTIAL GEOMETRY AND DATA SCIENCES: DISCRETE
STRUCTURES V.S. DISCRETISATION

4 Discrete differential geometry and data sciences: discrete structures v.s. discretisation . . . 25



DISCRETE DIFFERENTIAL GEOMETRY

Christiansen 2011: Regge calculus = finite elements
» Regge calculus (quantum & numerical gravity) : edge length as metric, angle deficit as curvature
> Regge finite element : piecewise constant symmetric tensor field

discrete definitions = functions/measures with weak regularity

curvature:
Dirac measure on hinges ™~

piecewise constant metric _ .
represented by edge lengths

Finite elements: piecewise functions/measure)

How to define curvature?

metric g discontinuous, I" ~ g~ (72 + 79 — 99) delta measure, R ~ 9L — oL 4 "' — I'I" not defined!

ox ox
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Further question:

» cohomological techniques for geometric objects (curvature etc.) with ultra weak regularity
Discrete Geometric Analysis via finite elements and PDEs ?

> finite element approach for other geometric patterns

Consequences: high-order & rigorous & new Discrete Differential Geometry, with applications to
advanced materials (origami etc.) , computer graphics , singular structures in universe / GR etc.
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Extend Regge calculus/finite element (S.Christiansen 2011, Regge for curvature)

metric curvature

metric (singular) curvature

def / inc / div
- P Pt -

- P - -
e - ~ -~

— -
[coz)? Regge Regge” [CcO2,]*
e CeOeTe @ Te 3, Coly

to Riemann-Cartan geometry  (S.Christiansen, KH, L.Ting 2023, extended Regge for curvature + torsion)

(coframe (metric) ] [discrete torsion ]

Lagrange @R? spanye, {07 (nt1], 0,[nt]), oytstT + tot7)}  SPece (0[]}

‘ = ‘ - /‘W - 7/%/
4

Regge @ mskw R3 discrete torsion

‘ l‘ o ‘/ l‘ K

Lagrangej @R?

[ discrete connection ] [curvature J

Question: systematic discretisation for generalised continuum with defects,
as in Yavari—Goriely?
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TOPOLOGICAL/GEOMETRIC DATA ANALYSIS

Canonical finite elements generalise to graphs and networks

s &

Finite element de Rham complex (shown in 3D)

Hypergraphs. Cliques (loops) can exist in any dimension.

Many applications in Topological Data Analysis (persistent homology), Hodge Laplacian on graphs
(ranking, data representation, geometric deep learning...), random graphs and phase transition

Hodge Laplacians on graphs. L. H. Lim, SIAM Review (2020).
What are higher-order networks?. C. Bick, E. Gross, H.A. Harrington, & M.T. Schaub, SIAM Review (2023).
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TOPOLOGICAL/GEOMETRIC DATA ANALYSIS

Canonical finite elements generalise to graphs and networks

L~

0—» = ur, v, J—)
\

Finite element de Rham complex (shown in 3D)

Hypergraphs. Cliques (loops) can exist in any dimension.

Many applications in Topological Data Analysis (persistent homology), Hodge Laplacian on graphs
(ranking, data representation, geometric deep learning...), random graphs and phase transition

| predict a new subject of statisti-
cal topology. Rather than count the
number of holes, Betti numbers, etc.,
one will be more interested in the
distribution of such objects on non-
compact manifolds as one goes out
to infinity.

— Isadore Singer

20

10

—bBo

B
— B>
—Bs
— b

Lazar Bertdk, MSc thesis at University
of Edinburgh, 2024

Betti number B changes with the
probability p of a random graph
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Mathematical elegance lies in patterns , or structures .

Through structure-aware formulation and structure-preserving discretisation,
achieve computation that we trust.

Ao s Ll & : ;&

“If an atom or electron is a basic unit for physicists, his
unit is the tetrahedron.”

— Cascading Principles Exhibition, AWB.
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