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MOTIVATION: STRUCTURE-PRESERVING DISCRETISATION

Fundamental question in plasma physics: given initial data, what does the system evolve to?
heating of solar corona, plasma equilibria (magnetic configurations) etc.

Magneto-friction (simplified MHD) :

B —V x (ux B)=0,

=V xB,
u=rT1jx B.
Energy decay Helicity conservation
L9 g B P S 9n=0, with 5= [ABdx, B=VxA
2 dt -7 S dte™ ™" 7 me ’ - :

Energy, Helicity, Normalmg, and divB with Respect to Time Energy, Helicity, Normaimg, and divB with Respect to Time
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Figure. Helicity-preserving scheme Figure. CG scheme (non-preserving)

» Topology-preserving discretization for the magneto-frictional equations arising in the Parker
conjecture, M. He, P. E. Farrell, KH, B. Andrews, SISC (2025).
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IDEAL MAGNETIC RELAXATION

AN it B
Eugene Parker

Parker hypothesis (Still Open)

For “almost any initial data”, the magnetic field develops tangential discontinuities (current sheet)

during the relaxation to static equilibrium.




RELIABLE NUMERICAL COMPUTATION

Computation is used for computing gravitational wave templates , investigating magnetic configurations
for fusion devices , designing quantum computing devices etc.

How confident are we in what we compute?

Key: differential complexes and cohomology encode fundamental structures in mathematical models.
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RELIABLE NUMERICAL COMPUTATION

Computation is used for computing gravitational wave templates , investigating magnetic configurations
for fusion devices , designing quantum computing devices etc.

How confident are we in what we compute?

Key: differential complexes and cohomology encode fundamental structures in mathematical models.

k—1 k
.y yk1 d vk _d V2.5 =

00— Co(Q) B2 coo(R3) —rly coo(;R3) —V () —— 0.
d® :=grad, d':=curl, d°:=div.
» complex property: dodk"1 =0, = R(d*"!) C ker(d¥),
curlograd = 0 = R(grad) C ker(curl), divocurl =0 = R(curl) C ker(div)

» cohomology: J# := ker(d*)/R(d*~1),
A0 = ker(grad), ! := ker(curl)/R(grad), 7?2 := ker(div)/R(curl)

> exactness: ker(d¥) = R(d*71), ie., du=0 = u=dk1v
curlu=0=u=grad¢, divv=0= v =-curl.
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FINITE ELEMENT EXTERIOR CALCULUS & RELAXATION
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Magnetohydrodynamics (MHD): macroscopic description of plasma, an incompressible model

O —ux (Vxu)—R1TAu—sj x B4+VP = f momentum equation,
j—VxB = 0 Ampere's law,
0:B+V x E = 0 Faraday's law,
R-1j—(E4+uxB) = 0 Ohm’s law,
V-B = 0 Gauss law,
V-u =0

initial conditions u(x,0) = up(x), B(x,0) = Bo(x),
boundary conditionson 9§2: u=0, B-n=0, Exn=0.

Three nonlinear terms:

fluid advection —u x (V x u) (in the vorticity form)
Lorentz force —sj x B

magnetic advection —V x (u x B)

For relaxation, we are interested in zero magnetic diffusion, nonzero fluid diffusion (R, = 0o, Re < 00).



ENERGY STRUCTURES OF MHD

Energy dissipation or conservation:

Sd _ —1;
lulls + 5 2 I1BIG + R Vullg + SR lI§ = (F, w),

1d
2dt
and hence
2 2 -1 T 2 -1 T HIYA
Jmax(lul3+SIBIE) + R [ Val3ar + 258, [ il ar

)
< luoll+ SIBol+ Re [ 1FI2ar.

With f =0, R1 = 0, total energy is non-increasing. However, some key information is not clear:

» whether the total energy decays to zero?
» how does total energy split into the fluid part (||u|[?) + magnetic part (S| B|?)?
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HELICITY: FINE STRUCTURES

Magnetic helicity: for magnetic potential A satisfying V x A = B,

magnetic helicity H, := [, A- Bdx

> |dea started from Helmholtz & Kelvin.
MHD: Woltjer's invariant, ideal fluid: Moffatt (giving the name).

» characterizing linking/knottedness of B.
Example: H¢ = 2/(Cy, G) Q1 - Q2, where [ is the Gauss linking number (topological quantity, =1 in
the figure below).

Arnold, Khesin, Topological methods in hydrodynamics, 1999
Helicity = averaging asymptotic linking number (continuum version of linked tubes) (V.I. Arnold)

Cross helicity:
cross helicity H¢ := [, u- Bdx

linking of vorticity and magnetic fields
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A TOPOLOGICAL MECHANISM

Arnold inequality (V.I. Arnold 1974): helicity provides lower bound for energy

'/A-de

Proof. Cauchy-Schwarz |fA - Bdx| < ||A||;2]|B||;2 + Poincaré inequality ||A||,2 < C||V X A]| 2.

gc/mﬁw

Vladimir I. Arnold

Differential form point of view: A: 1-form, B: 2-form

{ [AAB

<C { / BAxB

‘ Helicity, Topology ‘ ‘ Energy, Geometry ‘
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knots are topological barriers that prevent energy
from dissipation
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Fig: Pontin, Hornig, Living Rev. Sol. Phys. 2020.



Magnetic and cross helicity are conservative for ideal MHD (R;! = R;.} = 0).

d d
E/A‘de—o7 I/u-BdX—O.

Proof Advection of magnetic fields:
B; -V x(uxB)=0.

Then
i/A.Bzzi/A.VX(uxB)éz/vXA-(uxB)zz/u.(BxB):o.

*: integral by parts with vanishing boundary conditions.

Proof does not depend on u. Magnetic helicity conserved even with fluid diffusion.

Consequences: consider a system with fluid diffusion (Re < 00), without magnetic diffusion (Ry, =
00). Energy may decay (due to fluid diffusion), but has a lower bound (by magnetic helicity, which
remains constant). So topologically nontrivial initial data cannot evolve to a trivial stationary state.
This provides a topological constraint for ideal magnetic relaxation.
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Magnetic and cross helicity are conservative for ideal MHD (R;! = R;.} = 0).

d d
E/A‘de—o7 I/u-BdX—O.

Proof Advection of magnetic fields:
B; -V x(uxB)=0.

Then
i/A.Bzzi/A.VX(uxB)éz/vXA-(uxB)zz/u.(BxB):o.

*: integral by parts with vanishing boundary conditions.

Proof does not depend on u. Magnetic helicity conserved even with fluid diffusion.

Consequences: consider a system with fluid diffusion (Re < 00), without magnetic diffusion (Ry, =
00). Energy may decay (due to fluid diffusion), but has a lower bound (by magnetic helicity, which
remains constant). So topologically nontrivial initial data cannot evolve to a trivial stationary state.
This provides a topological constraint for ideal magnetic relaxation.

But numerical computation may lose this topological mechanism due to discretization errors (therefore
leading to wrong solutions)!
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TowAaRDS Computational Topological Hydrodynamics

A subject back to Kelvin, Helmholtz, and more recently by Arnold, Khesin, Moffatt, Sullivan...
limited applications due to lack of topology-preserving algorithms

i . Amold.
Khesin

Topological
Methods in
Hydrodynamics

Lord Kelvin  von Helmholtz Vladimir Arnold Boris Khesin Keith Moffatt Dennis Sullivan

Direct computational assessment of Parker’s hypothesis brings a number of challenges. Foremost among these is

the requirement to precisely maintain the magnetic topology during the simulated evolution, i.e., precisely
maintain the magnetic field line mapping between the two line-tied boundaries. ... In the following sections, two —
methods are described which seek to mitigate against these difficulties. However, in all cases the representation

of current singularities remains problematic. . .

The Parker problem: existence of smooth force-free fields and coronal heating, Pontin, Hornig, Living Rev. Sol. Phys. 2020.
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STRUCTURE-PRESERVING MHD: LITERATURE

Existing numerical methods for magnetic relaxation: Lagrange method, issues with mesh deformation

»  Mimetic methods for Lagrangian relaxation of magnetic fields, S.Candelaresi, D.Pontin, G.Hornig, SIAM Journal on
Scientific Computing (2014).

Structure-preserving discretization for MHD:
» energy conservation: e.g., Armero, Simo 1996
> V-B=0: eg., Brackbill, Barnes 1980

» helicity conservation: less attention, Liu,Wang 2004 (axisymmetric MHD flow, finite difference
methods); Kraus,Maj 2017 (DEC, variational integrator), Sullivan 2018 (‘Lattice hydrodynamics’).

Helicity-preserving finite element for NS:
Rebholz 2007; Zhang, Palha, Gerritsma, Rebholz 2022 (dual field approach).

Helicity-preserving finite element for MHD:

KH, Lee, Xu 2021; Gawlik, Gay-Balmaz 2022; Laakmann, KH, Farrell 2023 (Hall MHD), Zhang, Palha,

Brugnoli, Toshniwal, Gerritsma 2024.

The numerics below are based on the projection approach (Rebholz 2007, KH, Lee, Xu 2021).
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CANONICAL FINITE ELEMENTS FOR THE DE RHAM COMPLEX

' d& B ‘ div&
— R —_— —_— —_—
\

Raviart-Thomas (1977), Nédélec (1980) in numerical analysis

“The main advantage of these finite elements is the possibility of approximating Maxwell's equations while exactly verifying

one of the physical law.” — J.C. Nédélec, Mixed Finitc Elements in R* (1980)

Bossavit (1988): differential forms and complex

“A rationale for the use of these special 'mixed’ clements can be obtained if one expresses basic equations in terms of differential
forms, instead of vector fields. ... Whitney forms were described in 1957, long before the use of finite elements.”

— A. Bossavit, Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism (1988)

Hiptmair (1999), Arnold, Falk, Winther (2006): systematic study, “Finite Element Exterior Calculus”

r

Finite element exterior calculus (FEEC): structure-preserving FEM
Discrete exterior calculus (DEC):  defining spaces and operators on primal and dual meshes
Topological data analysis (TDA): cohomology and Hodge-Laplacian on graphs

Lim, Lek-Heng. "Hodge Laplacians on graphs." SIAM Review 62.3 (2020).
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WHY COMPLEXES MATTER?

Example: Gauss law in Maxwell equations. %—’f +VxE=0=0:/(V-B)=0.
Typical Galerkin schemes: Find Ej, € Yy, By € Zp, s.t.

(8tBh,Ch)+(VXEh,Ch):O, VCh € Zp.

Consequence: 0;Bp + PV x E, =0, hence 0;(V - Bp) = =V - PV x Ej. Non-zero in general, up to
discretization errors.
IP: L2 projection from V x Y}, to Z,. P = | (hence 0;(V - B;) = 0) only if V x Y}, C Z.

Relations like V x Y}, C Zj, are encoded in differential complexes (homological algebra).

[ Using finite elements in complexes leads to constraint-preservation.

12/33



DISCRETIZATION FOR MHD

[ Choice of spaces: all spaces in a finite element de Rham complex

» To preserve V- B =0, discretize B € H(div), E € H{(curl). Complex: curl H{(curl) C Hi(div)!
» key cancellation for the magnetic helicity : on the continuous level,
/Vx(uxB)-A:/(uxB)-B:O.
On the discrete level, a natural mixed scheme yields
/VXQ;“f'(ux B)-A:/Q;”f'(ux B)~V><A:/(u>< B)- Q5B #0,

QSurl: L2 projection to Hf(curl).
Fix: introduce H = Q"' B, use V x Q$“"(u x H) in the scheme.

/(u x Q5""'B) - Q5""'B = 0.

» cross helicity : similar. Introduce w := Qﬁ”"V X u.

> Any time stepping that preserves quadratic invariants.
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NUMERICAL SCHEME (MAGNETO-FRICTION)

Apply the same idea of choosing finite elements in a de Rham complex and adding projections :

Find (B, E, H,j,u) € H'(div) x H"(curl) x H"(curl) x H"(curl) x H"(div), such that for any

(B,E,H,j, 1) in the same space,

Energy law
1d
2 dt
Helicity conservation

d
— | A-B=0.
il

1B = —[|Q(H x j)]>.

B +V x E=0,
E=-P(ux H),
u=T1Q( x H),
J=VpxB,

H = PB.
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NUMERICAL TEST: HOPF FIBRATION

By = 4va 5 (2y(y — x2), =2(x + yz), (-1 + x4+ y? —2%)

(14 r?)

Every single field line of this field is a perfect circle, and every single field line is linked with every other one.

c.f. Smiet, C.B., Candelaresi, S. and Bouwmeester, D., 2017. Ideal relaxation of the Hopf fibration. Physics of Plasmas, 24(7).

Energy, Helicity, Normalmg, and divB with Respect to Time Energy, Helicity, Normalmg, and divB with Respect to Time
— Energy — Energy
175 — Helicity —— Helicity
=== [|B-nll 10 === |IB-n||
e VB v-B

0 200 400 600 800 1000 0 200 400 600 800 1000
Time Time

Figure. Helicity-preserving scheme Figure. CG scheme (non-preserving)

7=10, dt =1 and T = 1000.
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[show video]
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Furr MHD (KH, LEg, XU 2021)

Find (u,w,j, E, H, B, p) € [Hf(curl, 2)]° x Hi(div, £2) x Hi(grad) such that

(Diu,v) — (u x w,v) 4+ (Vp,v) =S x H,v) = (f,v), (1a)
(w,) = (VX ) = 0, (1b)

(u,Vq) = o, (10)

(D:B,C)+ (VX E,C) = 0, (1d)

(U,k)—(B,V xk) = 0, (le)

(E+uxH,G) = 0, (1f)

(B,F)— (H,F) = 0, (1g)

where Dyu = (1" — u®)/At, D:B = (B"" — B°?) /At and other variables are average of new and old
values (time stepping: implicit mid-point).

E = —Qp'(uxH),

w = QU(V x u)
j = VyxB, H=Q%'B.
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CONVERGENCE

Algorithms converge well for smooth true solutions.

Theorem 1 (L. Beirdo da Veiga, KH, L. Mascotto 2024')

Consider sequences {Tp} of shape-regular, quasi-uniform meshes. Let the true solution be sufficiently
smooth. Then, there exists a positive constant C independent of h such that, for all t in (0, T],

t t
leb(e)IP + (e + [ llcurtei(e)|ds [ eh(s)1ds < C(ll () + | RO + #2+).

The constant C includes regularity terms of the numerical solution, the shape-regularity parameter of the
mesh, and the polynomial degree k.

Further question: What if the true solution is nonsmooth?

Onsager’s conjecture; energy/helicity conservation may fail. But most FE preserves energy by definition.
Where is the boundary of structure-preservation?

L. Beirdo da Veiga, KH, L. Mascotto, Convergence analysis of a helicity-preserving finite element discretisation for an incompressible magnetohydrodynamics system, arXiv (2024)
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DYNAMO



TowAaRDS Computational Topological Hydrodynamics

Dynamo theory, another example:

mechanism of generation of magnetic fields in astrophysical objects
(e.g., change of magnetic fields of stars and planets)

Fast dynamo: exponential growth of magnetic field B
First eigenvalue of magnetic advection-diffusion (given u)

~Vx(uxB)— R’V xVxB=)\B.

Applied Mathematical Sciences

Vladimir|. Amold
Boris A. Khesin

Topological
Methods in
Hydrodynamics

&) Springer

Does there exist a divergence-free field u on a manifold that is a fast kinematic dynamo?
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DYNAMO

V.I.Arnold, E.l.Korkina 1983 computation: ‘Galerkin methods’, magnetic Reynolds number R, < 19.

Are there spurious solutions like in Maxwell equations?
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DYNAMO

V.l.Arnold, E.I.Korkina 1983 computation: ‘Galerkin methods’, magnetic Reynolds number R, < 19.

Are there spurious solutions like in Maxwell equations?

. It is still unknown whether this field (ABC flow) is a fast kinematic dynamo,
e.g., whether an exponentially growing mode of B survives as R, — oco.

Numerically, the kinematic fast dynamo problem is the first eigenvalue problem for
matrices of the order of many million, even for reasonable Reynolds numbers (of the
order of hundreds). The physically meaningful magnetic Reynolds numbers R, are
of order of magnitude 108. The corresponding matrices are (and will remain)
beyond the reach of any computer.

— Topological Methods in Hydrodynamics, V.I.Arnold, B.A.Khesin 2021.

Appled Mathematical Sciences

Vladimir|. Amold
Boris A. Khesin

Topological
Methods in
Hydrodynamics

€\ Springer
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DYNAMO

V.l.Arnold, E.I.Korkina 1983 computation: ‘Galerkin methods’, magnetic Reynolds number R, < 19.

Are there spurious solutions like in Maxwell equations?

. It is still unknown whether this field (ABC flow) is a fast kinematic dynamo,
e.g., whether an exponentially growing mode of B survives as R, — oco.

Numerically, the kinematic fast dynamo problem is the first eigenvalue problem for
matrices of the order of many million, even for reasonable Reynolds numbers (of the
order of hundreds). The physically meaningful magnetic Reynolds numbers R, are
of order of magnitude 108. The corresponding matrices are (and will remain)
beyond the reach of any computer.

— Topological Methods in Hydrodynamics, V.I.Arnold, B.A.Khesin 2021.

Is this true?

Appled Mathematical Sciences

Vladimir|. Amold
Boris A. Khesin

Topological
Methods in
Hydrodynamics

€\ Springer
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Lie Derivative

MHD vIA DIFFERENTIAL FORMS

-V x (u x B)

~R,'VxV xB=)\B

Lie derivative

advection

» Diffusion:

» Lie Derivative: For vector field u on manifold M. For a k-form w,

Hodge Laplacian

diffusion

Hodge Laplacian .

Lyw = lim

Aygy, :=dd +0d  (diffusion)

*
Prw —w

=

7—0 T T
. b-u(Toblp) [Tosip)
where flow @(t, x) satisfies 0;@ = u(P, t), ¢(0,x) = x. o i

P

» Cartan's Magic Formula: For vector field 5:

where ig T L

L,w
—~—
Lie derivative
advection

L = d*Yif + if 1 d"

‘ Fisherman derivative ":

the flow
AK=1 is contraction.
0 c2(0) 2 2R3 &P (2R3 2 c>2(2) «— 0.
+ \A_w Numerical application: (semi-)Lagrange methods for MHD

Hodge Laplacian
diffusion

Heumann,Hiptmair,Xu 2009

sitting on boat, differentiating along
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ADVECTION-DIFFUSION OF DIFFERENTIAL FORMS: IN COORDINATES

Lgw + Apyw =f.

rad url div
0 —— C(0) LT C (&R o CH(DR) o C(2) == 0.
—div cur — gra

0 () + 2 (R L co(R3) 2 cx(0) 0.
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ADVECTION-DIFFUSION OF DIFFERENTIAL FORMS: IN COORDINATES

Lgw + Apyw =f.

rad
0 — C(0) % Co(2;R3) C(2; R3) C(02) 0
0 Q) 2 (2R3 C>(£2;R3) C>(02) 0
(d<tik  + T w + (M, + didMw = f
B-Vw — divgradw = f

scalar advection-diffusion.
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ADVECTION-DIFFUSION OF DIFFERENTIAL FORMS: IN COORDINATES

Lgw + Apyw =f.

rad ur
0 C(Q) % C>(2: R3) Ci: C(2;R3) C(0) 0
—div cur
0 () L co(2;R3) P ¢ (2 R3) C>(02) 0
(d<ts  + ikt w + (@, + didw = f
grad(8-A) — B x(curlA) + (—graddiv. + curlcur)A = f

advection-diffusion of magnetic potential.
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ADVECTION-DIFFUSION OF DIFFERENTIAL FORMS: IN COORDINATES

0 C=(02)
0 Cc=(02)
(d* tig +

—curl(Bx B) +
If imposing div B = 0:

magnetic advection-diffusion.

Lgw + Apyw =f.

url div
CR(Q2R3) o C(2R3) —= C®(0)
—grad

curl

Co(2R3) L coo( R3) 22 coo(02)

igTtdw  + (d M, + didM)w
grad div)B

(divB)B + (curl curl —

—curl(8 x B) +curlcurl B = f.
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ADVECTION-DIFFUSION OF DIFFERENTIAL FORMS: IN COORDINATES

0 (1)

0 C(02)

@+

div(upB)

Lgw + Apyw =f.

div

C>®(£2;R3) CRO(R3) —= C(0) —=0
—grad
Co(2; R3) Co(2R3) +22 o) «—— 0
igTtdw  + (d* i, 4+ did)w = f

— divgradu = f

Fokker-Planck type equation (transport of density)
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CONVERGENCE OF ADVECTION-DIFFUSION EIGENVALUE PROBLEMS

Find B VK A\ e C:
(6B,5C) + (iyB,5C) = \(B,C), VC e V¥

Find B € H(curl), A € C:
RV xB,VxC)—(uxB,VxC)=\B,C), YC e H(curl)

Bramble-Osborn Theory: Under assumptions

» Solution operator T : X — X is compact
T :f— Bsolves R, (Vx B,V xC)—(uxB,VxC)=(f,C).

» T, : Xy — Xpis compact and finite rank

|T — Th|| - 0 = convergence

James Bramble John Osborn

Application to MHD: Boils down to regularity of T: Vg := T(L2) << H(curl)
Theorem [KH, Liang, Zerbinati]: For given smooth u, Vi << H(curl) = eigenvalue convergence

Rayleigh quotient (min-max) fails due to non-self-adjoint advection, losing information (e.g., convergence
of individual eigenvalues with multiplicity)
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WITTEN TRANSFORM: WHEN WIND IS POTENTIAL (GRADIENT)

cei s gk D gk D gkl D

lee(x) J(eﬂ(x) J(ee(x)

d, d,
e pk1 % o

d
Ak O, pAk+L 20, .

Diagram commutes:

O d(e ?@w) = V0 A w + dw.

gauge transform. Compare to covariant derivatives Vw = 0w + [ - w.

e

5 Edward Witten

e Akl 0 gk 0 pkL 0
JQG(X) leB(X) lee(X) Supersymmetry and Morse theory,
) ) ) Witten (1982) J. Diff. Geo.
) Ak—1 Y 6 pgk+1 o . ( )

Witten deformation

dpu = e 00 5e0(x) , — Ly (dpy: U+ Ou. Witten complex
Witten Laplacian

dorg + 0+9d = Ap + Lye

Hodge Laplacian on transformed coordinates = advection-diffusion

Numerical applications: stablizing numerical oscillation Brezzi,Marini,Pietra 1989 : exponential fitting,
scalar problem; Wu,Xu 2018 : forms in 3D; Christiansen,Halvorsen,Sgrensen 2014 : Petrov Galerkin
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Consequence 1: for potential (gradient) winds, eigenvalues are real.

Eigenvalues of 2D Kikuchi Advection Problem

100 1, Re=1.0e+01

u1, Re=1.0e+00

75 A uy, Re=1.0e-01

A ), Re=1.0e+01

50 1 A uy, Re=1.0e+00

A up, Re=1.0e-01

> 25
ry' v 3 Ak [V '\ } A A AA AA

YY
[
Imaginary part
S
L

—25 1

—50 -

—75 4

—100 1

A

T
0 20 40 60
Real part

80

Figure. Eigenvalues for the toroidal surface with wind u;

(non-gradient) and uy (gradient).

up = (1,1), up = (2cos(2x)sin(2y), 2sin(2x) cos(2y))

Consequence 2: improved estimates (essentially self-adjoint)
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(GENERALIZING HODGE THEORY

Theorem 2 (V. I. Arnold)

The number of linearly independent stationary k-forms is not less than the k-th betti number of the
manifold M.

Theorem 3 (V. I. Arnold)

If the diffusion coefficient R.* is sufficiently large, then the number of linearly independent stationary
k-forms is equal to the k-th betti number of the manifold M.

bo=1,by =1,by =0.uy = (1,1)

Test 1 C : : j Rm | 100 |10 |1]0.1

dim(XAo) | 1 | 1 |1] 1

) <\ ¥ b0:17b1:27b2:1~
1 / C ; uz = (2cos(2x)sin(2y), 2sin(2x) cos(2y))

Test 2
@ @ Rm |100]10 101

dim(Xo) | 2 | 2 |2] 2
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BACK TO THE VERY FIRST ASSUMPTION...

Numerically, the kinematic fast dynamo problem is the first eigenvalue problem for matrices of the
order of many million, even for reasonable Reynolds numbers (of the order of hundreds). The physically
meaningful magnetic Reynolds numbers R, are of order of magnitude 108. The corresponding matrices
are (and will remain) beyond the reach of any computer.

— Topological Methods in Hydrodynamics, V.1.Arnold, B.A.Khesin 2021.
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BACK TO THE VERY FIRST ASSUMPTION...

Numerically, the kinematic fast dynamo problem is the first eigenvalue problem for matrices of the
order of many million, even for reasonable Reynolds numbers (of the order of hundreds). The physically
meaningful magnetic Reynolds numbers R,, are of order of magnitude 108. The corresponding matrices
are (and will remain) beyond the reach of any computer.

— Topological Methods in Hydrodynamics, V.1.Arnold, B.A.Khesin 2021.
Eigenvalue analysis is often misleading for telling (in)stability.

— LLOYD N. TREFETHEN
transient approximately determined by o¢(A): MARK EMBREE

pseudospectral abscissae ac(A)

log le** 1l

slope determined by o(A):

spectral abscissa a(A) SPECTRA

o slope determined by W(A):
numerical abscissa w(A)

AND

— PSEUDOSPECTRA

o t

Figure 14.1: Initial, transient, and asymptotic behavior of ||e*? || for a nonnormal
matrix or operator A. The Behavior of Nonnormal

In transient region (better described by pseudo-spectra), non- Matrices and Operators

linear effects become dominating, Asymptotics described by
eigenvalues never reached .
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STRUCTURE-PRESERVING FE ALSO COMPUTES PSEUDO-SPECTRA

o (A)={zeC:|(z- A7 >t}
0e(A) ={z € C: smin(z— A) < €}

Smin: mMinimal singular value

Theorem 4 (Zerbinati)

Finite element for pseudo-spectra converges.

Dynamo Pseudo-Spectra Re=3.0e+00, U Dynamo Pseudo-Spectra Re=3.0e+00, u; Dynamo Pseudo-Spectra Re=3.0e+00, u;

up = 0 Hodge Laplacian

u; = (1,1) non potential

uy = (2cos(2x)sin(2y), 2sin(2x) cos(2y)) potential

Umberto Zerbinati,
Mini-course
Edinburgh 2025
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LAGRANGE ELEMENTS LEAD TO SPURIOUS MODES AGAIN

Dynamo Pseudo-Spectra Re=1.0e+00, uy, Kikuchi

17700

u; = (1, 1)

x: from nodal elements  o: Nédélec (FEEC)

Dynamo Pseudo-Spe kuchi

ctra Re=1.0e+00, u;, Ki
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BACK TO ARNOLD&KORKINA 1983 COMPUTATION

Arnold, V. I, & Korkina, E. I. (1983). The growth of a magnetic field in the three-dimensional steady flow
of an incompressible fluid. Moskovskii Universitet Vestnik Seriia Matematika Mekhanika, 43-46.

Fourier basis e'¥® — ei(kixi+++knxa)

eik~w eik-w
0 RLE grad elkx curl elkx div RLE 0
eik~w eik-w

“good” complex. Ongoing work with A. Bressan, Y. Zhu.

Compared to finite element exterior calculus, less attention paid to spectral basis and spectral methods.
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SUMMARY

An exciting start...

FEEC for topological hydrodynamics

» Long-term evolution and rough solutions.

» Solvers.

» Nonlinear eigenvalue problems, pseudo-spectra...
» Turbulence.

» Going beyond compactness framework in computing eigenvalues.
> ...
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» Stable finite element methods preserving V - B = 0 exactly for MHD models, K. Hu, Y. Ma, J. Xu; Numerische

Mathematik, 135(2), 371-396 (2017). divergence-free preservation

» Robust preconditioners for incompressible MHD models, Y. Ma, K. Hu, X. Hu, J. Xu; Journal of Computational
Physics, 316, 721-746 (2016). preconditioning

» Helicity-conservative finite element discretization for incompressible MHD systems, K. Hu, Y.-J. Lee, J. Xu;
Journal of Computational Physics (2021). helicity preservation

» Structure-preserving and helicity-conserving finite element approximations and preconditioning for the Hall
MHD equations, F. Laakmann, K. Hu, P. E. Farrell; Journal of Computational Physics (2023). Hall MHD

» Finite element exterior calculus for multiphysics problems, K. Hu; Peking University (2017) PhD thesis
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Collaborators: Relaxation

» Topology-preserving discretization for the
ol magneto-frictional equations arising in the Parker
e conjecture, M. He, P. E. Farrell, K. Hu, B. D.

Mingdong Patrick Boris Andrews; SISC (2025)
He Farrell Andrews
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Collaborators: Dynamo
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i Stefano Umberto Jindong Wang » Pseudospectra of advection-diffusion of
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KAUST Oxford

» FEEC for dynamo, D. Boffi, K. Hu, Y.
Liang, S. Zampini, U. Zerbinati; in
preparation
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