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Motivation: structure-preserving discretisation
Fundamental question in plasma physics: given initial data, what does the system evolve to?
heating of solar corona, plasma equilibria (magnetic configurations) etc.

Magneto-friction (simplified MHD) :

Bt − ∇ × (u × B) = 0,
j = ∇ × B,
u = τ j × B.

Energy decay

1
2

d
dt ∥B∥2 = −τ∥B × j∥2.

Helicity conservation

d
dtHm = 0, with Hm :=

∫
A·B dx , B = ∇×A.

Figure. Helicity-preserving scheme Figure. CG scheme (non-preserving)
▶ Topology-preserving discretization for the magneto-frictional equations arising in the Parker

conjecture, M. He, P. E. Farrell, KH, B. Andrews, SISC (2025).
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Ideal magnetic relaxation

d Eugene Parker

Parker hypothesis (Still Open)

For “almost any initial data”, the magnetic field develops tangential discontinuities (current sheet)
during the relaxation to static equilibrium.
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Reliable numerical computation
Computation is used for computing gravitational wave templates , investigating magnetic configurations
for fusion devices , designing quantum computing devices etc.

How confident are we in what we compute?

Key: differential complexes and cohomology encode fundamental structures in mathematical models.

· · · V k−1 V k V k+1 · · ·dk−1 dk

0 C∞(Ω) C∞(Ω;R3) C∞(Ω;R3) C∞(Ω) 0.grad curl div

d0 := grad, d1 := curl, d2 := div .

▶ complex property: dk ◦ dk−1 = 0, ⇒ R(dk−1) ⊂ ker(dk),
curl ◦ grad = 0 ⇒ R(grad) ⊂ ker(curl), div ◦ curl = 0 ⇒ R(curl) ⊂ ker(div)

▶ cohomology: H k := ker(dk)/R(dk−1),
H 0 := ker(grad), H 1 := ker(curl)/R(grad), H 2 := ker(div)/R(curl)

▶ exactness: ker(dk) = R(dk−1), i.e., dku = 0 ⇒ u = dk−1v
curl u = 0 ⇒ u = gradϕ, div v = 0 ⇒ v = curlψ.
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Magnetohydrodynamics (MHD): macroscopic description of plasma, an incompressible model

∂tu − u × (∇ × u) − R−1
e ∆u − sj × B + ∇P = f momentum equation,

j − ∇ × B = 0 Ampere’s law,
∂tB + ∇ × E = 0 Faraday’s law,

R−1
m j − (E + u × B) = 0 Ohm’s law,

∇ · B = 0 Gauss law,
∇ · u = 0,

initial conditions u(x, 0) = u0(x), B(x, 0) = B0(x),
boundary conditions on ∂Ω: u = 0, B · n = 0, E × n = 0.

Three nonlinear terms:

fluid advection −u × (∇ × u) (in the vorticity form)
Lorentz force −sj × B
magnetic advection −∇ × (u × B)

For relaxation, we are interested in zero magnetic diffusion, nonzero fluid diffusion (Rm = ∞,Re < ∞).
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Energy structures of MHD

Energy dissipation or conservation:

1
2

d
dt ∥u∥2

0 + S
2

d
dt ∥B∥2

0 + R−1
e ∥∇u∥2

0 + SR−1
m ∥j∥2

0 = (f ,u),

and hence

max
0≤t≤T

(
∥u∥2

0 + S∥B∥2
0

)
+ R−1

e

∫ T

0
∥∇u∥2

0 dτ + 2SR−1
m

∫ T

0
∥j∥2

0 dτ

≤ ∥u0∥2
0 + S∥B0∥2

0 + Re

∫ T

0
∥f ∥2

−1 dτ.

With f = 0, R−1
m = 0, total energy is non-increasing. However, some key information is not clear:

▶ whether the total energy decays to zero?
▶ how does total energy split into the fluid part (∥u∥2) + magnetic part (S∥B∥2)?
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Helicity: fine structures

Magnetic helicity: for magnetic potential A satisfying ∇ × A = B,

magnetic helicity Hm :=
∫

Ω A · B dx

▶ Idea started from Helmholtz & Kelvin.
MHD: Woltjer’s invariant, ideal fluid: Moffatt (giving the name).

▶ characterizing linking/knottedness of B.
Example: Hξ = 2l(C1,C2)Q1 · Q2, where l is the Gauss linking number (topological quantity, =1 in
the figure below).

Arnold, Khesin, Topological methods in hydrodynamics, 1999

Helicity = averaging asymptotic linking number (continuum version of linked tubes) (V.I. Arnold)

Cross helicity:

cross helicity Hc :=
∫

Ω u · B dx

linking of vorticity and magnetic fields
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A topological mechanism

Arnold inequality (V.I. Arnold 1974): helicity provides lower bound for energy

∣∣∣∣∫ A · B dx
∣∣∣∣ ≤ C

∫
|B|2 dx

Proof. Cauchy-Schwarz |
∫

A · B dx | ≤ ∥A∥L2 ∥B∥L2 + Poincaré inequality ∥A∥L2 ≤ C∥∇ × A∥L2 .
Vladimir I. Arnold

Differential form point of view: A: 1-form, B: 2-form

∫
A ∧ B

∫
B ∧ ∗B≤ C

Helicity, Topology Energy, Geometry

≠⇒

Fig: Pontin, Hornig, Living Rev. Sol. Phys. 2020.

knots are topological barriers that prevent energy
from dissipation
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Magnetic and cross helicity are conservative for ideal MHD (R−1
e = R−1

m = 0).

d
dt

∫
A · B dx = 0, d

dt

∫
u · B dx = 0.

Proof Advection of magnetic fields:
Bt − ∇ × (u × B) = 0.

Then
d
dt

∫
A · B = 2 d

dt

∫
A · ∇ × (u × B) ∗= 2

∫
∇ × A · (u × B) = 2

∫
u · (B × B) = 0.

∗: integral by parts with vanishing boundary conditions.

Proof does not depend on u. Magnetic helicity conserved even with fluid diffusion.

Consequences: consider a system with fluid diffusion (Re < ∞), without magnetic diffusion (Rm =
∞). Energy may decay (due to fluid diffusion), but has a lower bound (by magnetic helicity, which
remains constant). So topologically nontrivial initial data cannot evolve to a trivial stationary state.
This provides a topological constraint for ideal magnetic relaxation.

But numerical computation may lose this topological mechanism due to discretization errors (therefore
leading to wrong solutions)!
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Towards Computational Topological Hydrodynamics

A subject back to Kelvin, Helmholtz, and more recently by Arnold, Khesin, Moffatt, Sullivan...
limited applications due to lack of topology-preserving algorithms

Lord Kelvin von Helmholtz Vladimir Arnold Boris Khesin Keith Moffatt Dennis Sullivan

Direct computational assessment of Parker’s hypothesis brings a number of challenges. Foremost among these is
the requirement to precisely maintain the magnetic topology during the simulated evolution, i.e., precisely
maintain the magnetic field line mapping between the two line-tied boundaries. . . . In the following sections, two
methods are described which seek to mitigate against these difficulties. However, in all cases the representation
of current singularities remains problematic. . .

—

The Parker problem: existence of smooth force-free fields and coronal heating, Pontin, Hornig, Living Rev. Sol. Phys. 2020.
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Structure-preserving MHD: literature

Existing numerical methods for magnetic relaxation: Lagrange method, issues with mesh deformation
▶ Mimetic methods for Lagrangian relaxation of magnetic fields, S.Candelaresi, D.Pontin, G.Hornig, SIAM Journal on

Scientific Computing (2014).

Structure-preserving discretization for MHD:
▶ energy conservation: e.g., Armero, Simo 1996
▶ ∇ · B = 0: e.g., Brackbill, Barnes 1980
▶ helicity conservation: less attention, Liu,Wang 2004 (axisymmetric MHD flow, finite difference

methods); Kraus,Maj 2017 (DEC, variational integrator), Sullivan 2018 (‘Lattice hydrodynamics’).

Helicity-preserving finite element for NS:
Rebholz 2007; Zhang, Palha, Gerritsma, Rebholz 2022 (dual field approach).

Helicity-preserving finite element for MHD:
KH, Lee, Xu 2021; Gawlik, Gay-Balmaz 2022; Laakmann, KH, Farrell 2023 (Hall MHD), Zhang, Palha,
Brugnoli, Toshniwal, Gerritsma 2024.

The numerics below are based on the projection approach (Rebholz 2007, KH, Lee, Xu 2021).
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Canonical finite elements for the de Rham complex

0
grad curl div

0

Raviart-Thomas (1977), Nédélec (1980) in numerical analysis

“The main advantage of these finite elements is the possibility of approximating Maxwell’s equations while exactly verifying
one of the physical law.” – J.C. Nédélec, Mixed Finitc Elements in R3 (1980)

Bossavit (1988): differential forms and complex

“A rationale for the use of these special ’mixed’ clements can be obtained if one expresses basic equations in terms of differential
forms, instead of vector fields. ... Whitney forms were described in 1957, long before the use of finite elements.”
– A. Bossavit, Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism (1988)

Hiptmair (1999), Arnold, Falk, Winther (2006): systematic study, “Finite Element Exterior Calculus”

Finite element exterior calculus (FEEC): structure-preserving FEM
Discrete exterior calculus (DEC): defining spaces and operators on primal and dual meshes
Topological data analysis (TDA): cohomology and Hodge-Laplacian on graphs

Lim, Lek-Heng. "Hodge Laplacians on graphs." SIAM Review 62.3 (2020).
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Why complexes matter?

Example: Gauss law in Maxwell equations. ∂B
∂t + ∇ × E = 0 =⇒ ∂t(∇ · B) = 0.

Typical Galerkin schemes: Find Eh ∈ Yh, Bh ∈ Zh, s.t.

(∂tBh,Ch) + (∇ × Eh,Ch) = 0, ∀Ch ∈ Zh.

Consequence: ∂tBh + P∇ × Eh = 0, hence ∂t(∇ · Bh) = −∇ · P∇ × Eh. Non-zero in general, up to
discretization errors.
P: L2 projection from ∇ × Yh to Zh. P = I (hence ∂t(∇ · Bh) = 0) only if ∇ × Yh ⊂ Zh.

Relations like ∇ × Yh ⊂ Zh are encoded in differential complexes (homological algebra).

0
grad curl div

0

Using finite elements in complexes leads to constraint-preservation.
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Discretization for MHD

Choice of spaces: all spaces in a finite element de Rham complex

▶ To preserve ∇ · B = 0 , discretize B ∈ Hh
0 (div), E ∈ Hh

0 (curl). Complex: curl Hh
0 (curl) ⊂ Hh

0 (div)!

▶ key cancellation for the magnetic helicity : on the continuous level,∫
∇ × (u × B) · A =

∫
(u × B) · B = 0.

On the discrete level, a natural mixed scheme yields∫
∇ × Qcurl

h (u × B) · A =
∫

Qcurl
h (u × B) · ∇ × A =

∫
(u × B) · Qcurl

h B ̸= 0,

Qcurl
h : L2 projection to Hh

0 (curl).
Fix: introduce H = Qcurl

h B, use ∇ × Qcurl
h (u × H) in the scheme.∫
(u × Qcurl

h B) · Qcurl
h B = 0.

▶ cross helicity : similar. Introduce ω := Qcurl
h ∇ × u.

▶ Any time stepping that preserves quadratic invariants.
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Numerical scheme (magneto-friction)

Apply the same idea of choosing finite elements in a de Rham complex and adding projections :

Find (B,E ,H, j ,u) ∈ Hh(div) × Hh(curl) × Hh(curl) × Hh(curl) × Hh(div), such that for any
(B̂, Ê , Ĥ, ĵ , û) in the same space,

(Bt , B̂) + (∇ × E , B̂) = 0,
(E , Ê) = −(u × H, Ê),

(u, v̂) = τ(j × H, v̂),
(j , ĵ) = (B,∇ × ĵ),

(H, Ĥ) = (B, Ĥ).

Bt + ∇ × E = 0,
E = −P(u × H),
u = τQ(j × H),

j = ∇h × B,
H = PB.

Energy law
1
2

d
dt ∥B∥2 = −τ∥Q(H × j)∥2.

Helicity conservation
d
dt

∫
A · B = 0.
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Numerical test: Hopf fibration

B0 = 4
√

a
π(1 + r2)3 (2y(y − xz),−2(x + yz), (−1 + x2 + y2 − z2))

Every single field line of this field is a perfect circle, and every single field line is linked with every other one.
c.f. Smiet, C.B., Candelaresi, S. and Bouwmeester, D., 2017. Ideal relaxation of the Hopf fibration. Physics of Plasmas, 24(7).

Figure. Helicity-preserving scheme Figure. CG scheme (non-preserving)

τ = 10, dt = 1 and T = 1000.
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[show video]
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Full MHD (KH, Lee, Xu 2021)

Find (u,ω, j ,E ,H,B, p) ∈ [Hh
0 (curl, Ω)]5 × Hh

0 (div, Ω) × Hh
0 (grad) such that

(Dtu, v) − (u × ω, v) + (∇p, v) − S(j × H, v) = (f , v), (1a)
(ω,µ) − (∇ × u,µ) = 0, (1b)

(u,∇q) = 0, (1c)
(DtB,C) + (∇ × E ,C) = 0, (1d)

(j , k) − (B,∇ × k) = 0, (1e)
(E + u × H,G) = 0, (1f)
(B,F ) − (H,F ) = 0, (1g)

where Dtu = (unew − uold)/∆t, DtB = (Bnew − Bold)/∆t and other variables are average of new and old
values (time stepping: implicit mid-point).

E = −Qcurl
h (u × H),

ω = Qcurl
h (∇ × u)

j = ∇h × B, H = Qcurl
h B.
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Convergence

Algorithms converge well for smooth true solutions.

Theorem 1 (L. Beirão da Veiga, KH, L. Mascotto 20241)
Consider sequences {Th} of shape-regular, quasi-uniform meshes. Let the true solution be sufficiently
smooth. Then, there exists a positive constant C independent of h such that, for all t in (0,T ],

∥ eu
h(t)∥2 + ∥ eB

h (t)∥2 +
∫ t

0
∥ curl eu

h(s)∥2 ds +
∫ t

0
∥ ej

h(s)∥2 ds ≤ C(∥ eu
h(0)∥2 + ∥ eB

h (0)∥2 + h2(k+1)).

The constant C includes regularity terms of the numerical solution, the shape-regularity parameter of the
mesh, and the polynomial degree k.

Further question: What if the true solution is nonsmooth?

Onsager’s conjecture; energy/helicity conservation may fail. But most FE preserves energy by definition.
Where is the boundary of structure-preservation?

1L. Beirão da Veiga, KH, L. Mascotto, Convergence analysis of a helicity-preserving finite element discretisation for an incompressible magnetohydrodynamics system, arXiv (2024)
18 / 33



Dynamo
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Towards Computational Topological Hydrodynamics

Dynamo theory, another example:

mechanism of generation of magnetic fields in astrophysical objects
(e.g., change of magnetic fields of stars and planets)

Fast dynamo: exponential growth of magnetic field B
First eigenvalue of magnetic advection-diffusion (given u)

−∇ × (u × B) − R−1
m ∇ × ∇ × B = λB.

Does there exist a divergence-free field u on a manifold that is a fast kinematic dynamo?
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Dynamo

V.I.Arnold, E.I.Korkina 1983 computation: ‘Galerkin methods’, magnetic Reynolds number Rm ≤ 19.

Are there spurious solutions like in Maxwell equations?

... It is still unknown whether this field (ABC flow) is a fast kinematic dynamo,
e.g., whether an exponentially growing mode of B survives as Rm → ∞.

...

Numerically, the kinematic fast dynamo problem is the first eigenvalue problem for
matrices of the order of many million, even for reasonable Reynolds numbers (of the
order of hundreds). The physically meaningful magnetic Reynolds numbers Rm are
of order of magnitude 108. The corresponding matrices are (and will remain)
beyond the reach of any computer.

— Topological Methods in Hydrodynamics, V.I.Arnold, B.A.Khesin 2021.

Is this true?
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MHD via Differential Forms
−∇ × (u × B)︸ ︷︷ ︸

Lie derivative
advection

−R−1
m ∇ × ∇ × B︸ ︷︷ ︸

Hodge Laplacian
diffusion

= λB

▶ Diffusion: Hodge Laplacian . ∆HL := dδ + δd (diffusion)

▶ Lie Derivative: For vector field u on manifold M. For a k-form ω,

Luω = lim
τ→0

Φ∗
τω − ω

τ

where flow Φ(t, x) satisfies ∂tΦ = u(Φ, t), Φ(0, x) = x .

▶ Cartan’s Magic Formula: For vector field β:

Lk
β = dk−1ik

β + ik+1
β dk

where ik
β : Λk → Λk−1 is contraction.

‘ Fisherman derivative ’:
sitting on boat, differentiating along
the flow

0 C∞(Ω) C∞(Ω;R3) C∞(Ω;R3) C∞(Ω) 0.·β ×β ⊗β

Luw︸︷︷︸
Lie derivative

advection

+ ∆HLw︸ ︷︷ ︸
Hodge Laplacian

diffusion

Numerical application: (semi-)Lagrange methods for MHD
Heumann,Hiptmair,Xu 2009
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Advection-diffusion of differential forms: in coordinates

Lβw +∆HLw = f .

0 C∞(Ω) C∞(Ω;R3) C∞(Ω;R3) C∞(Ω) 0.
grad

− div

curl

curl

div

− grad

0 C∞(Ω) C∞(Ω;R3) C∞(Ω;R3) C∞(Ω) 0.·β ×β ⊗β
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Advection-diffusion of differential forms: in coordinates

Lβw +∆HLw = f .

0 C∞(Ω) C∞(Ω;R3) C∞(Ω;R3) C∞(Ω) 0
grad

− div

0 C∞(Ω) C∞(Ω;R3) C∞(Ω;R3) C∞(Ω) 0·β

(dk−1ik
β + ik+1

β dk)w + (dk−1d∗
k−1 + d∗

k dk)
w = f

β · ∇w − div grad w = f

scalar advection-diffusion.
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Advection-diffusion of differential forms: in coordinates

Lβw +∆HLw = f .

0 C∞(Ω) C∞(Ω;R3) C∞(Ω;R3) C∞(Ω) 0
grad

− div

curl

curl

0 C∞(Ω) C∞(Ω;R3) C∞(Ω;R3) C∞(Ω) 0·β ×β

(dk−1ik
β + ik+1

β dk)w + (dk−1d∗
k−1 + d∗

k dk)
w = f

grad(β · A) − β × (curl A) + (− grad div + curl curl)A = f

advection-diffusion of magnetic potential.
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Advection-diffusion of differential forms: in coordinates

Lβw +∆HLw = f .

0 C∞(Ω) C∞(Ω;R3) C∞(Ω;R3) C∞(Ω) 0
curl

curl

div

− grad

0 C∞(Ω) C∞(Ω;R3) C∞(Ω;R3) C∞(Ω) 0×β ⊗β

(dk−1ik
B + ik+1

B dk)w + (dk−1d∗
k−1 + d∗

k dk)
w = f

− curl(β × B) + (div B)β + (curl curl − grad div)B = f

If imposing div B = 0:
− curl(β × B) + curl curl B = f .

magnetic advection-diffusion.
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Advection-diffusion of differential forms: in coordinates

Lβw +∆HLw = f .

0 C∞(Ω) C∞(Ω;R3) C∞(Ω;R3) C∞(Ω) 0
div

− grad

0 C∞(Ω) C∞(Ω;R3) C∞(Ω;R3) C∞(Ω) 0⊗β

(dk−1ik
B + ik+1

B dk)w + (dk−1d∗
k−1 + d∗

k dk)
w = f

div(uβ) − div grad u = f

Fokker-Planck type equation (transport of density)
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Convergence of Advection-Diffusion Eigenvalue Problems

Find B ∈ V k , λ ∈ C:
(δB, δC) + (iuB, δC) = λ(B,C), ∀C ∈ V k

Find B ∈ H(curl), λ ∈ C:

R−1
m (∇ × B,∇ × C) − (u × B,∇ × C) = λ(B,C), ∀C ∈ H(curl)

Bramble-Osborn Theory: Under assumptions
▶ Solution operator T : X → X is compact

T : f 7→ B solves R−1
m (∇ × B, ∇ × C) − (u × B, ∇ × C) = (f , C).

▶ Th : Xh → Xh is compact and finite rank
∥T − Th∥ → 0 =⇒ convergence James Bramble John Osborn

Application to MHD: Boils down to regularity of T : V0 := T (L2) ↪→↪→ H(curl)

Theorem [KH, Liang, Zerbinati]: For given smooth u, V0 ↪→↪→ H(curl) =⇒ eigenvalue convergence

Rayleigh quotient (min-max) fails due to non-self-adjoint advection, losing information (e.g., convergence
of individual eigenvalues with multiplicity)
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Witten transform: when wind is potential (gradient)

· · · Λk−1 Λk Λk+1 · · ·

· · · Λk−1 Λk Λk+1 · · ·

d

eθ(x)

d

eθ(x)

d

eθ(x)

dθ dθ dθ

Diagram commutes:

eθ(x)d(e−θ(x)w) = −∇θ ∧ w + dw .

gauge transform. Compare to covariant derivatives ∇w = ∂w + Γ · w .

· · · Λk−1 Λk Λk+1 · · ·

· · · Λk−1 Λk Λk+1 · · ·

eθ(x)

δ

eθ(x)

δ

eθ(x)

δ

δθ δθ δθ

δθu := e−θ(x)δeθ(x)u = ι±(dθ)♯u + δu.

dδ±θ + δ±θd = ∆HL + L∇θ

Hodge Laplacian on transformed coordinates = advection-diffusion

Edward Witten

Supersymmetry and Morse theory,
Witten (1982) J. Diff. Geo.

Witten deformation
Witten complex
Witten Laplacian

Numerical applications: stablizing numerical oscillation Brezzi,Marini,Pietra 1989 : exponential fitting,
scalar problem; Wu,Xu 2018 : forms in 3D; Christiansen,Halvorsen,Sørensen 2014 : Petrov Galerkin
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Consequence 1: for potential (gradient) winds, eigenvalues are real.
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Eigenvalues of 2D Kikuchi Advection Problem
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Figure. Eigenvalues for the toroidal surface with wind u1
(non-gradient) and u2 (gradient).

u1 = (1, 1), u2 = (2 cos(2x) sin(2y), 2 sin(2x) cos(2y))

Consequence 2: improved estimates (essentially self-adjoint)
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Generalizing Hodge theory

Theorem 2 (V. I. Arnold)

The number of linearly independent stationary k-forms is not less than the k-th betti number of the
manifold M.

Theorem 3 (V. I. Arnold)

If the diffusion coefficient R−1
m is sufficiently large, then the number of linearly independent stationary

k-forms is equal to the k-th betti number of the manifold M.

Test 1

b0 = 1, b1 = 1, b2 = 0. u1 = (1, 1)

Rm 100 10 1 0.1

dim(λ0) 1 1 1 1

Test 2

b0 = 1, b1 = 2, b2 = 1.
u2 = (2 cos(2x) sin(2y), 2 sin(2x) cos(2y))

Rm 100 10 1 0.1

dim(λ0) 2 2 2 2
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Back to the very first assumption...

Numerically, the kinematic fast dynamo problem is the first eigenvalue problem for matrices of the
order of many million, even for reasonable Reynolds numbers (of the order of hundreds). The physically
meaningful magnetic Reynolds numbers Rm are of order of magnitude 108. The corresponding matrices
are (and will remain) beyond the reach of any computer.

— Topological Methods in Hydrodynamics, V.I.Arnold, B.A.Khesin 2021.

Eigenvalue analysis is often misleading for telling (in)stability.

In transient region (better described by pseudo-spectra), non-
linear effects become dominating, Asymptotics described by
eigenvalues never reached .
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Structure-preserving FE also computes pseudo-spectra

σϵ(A) = {z ∈ C : ∥(z − A)−1∥ > ϵ−1}

σϵ(A) = {z ∈ C : smin(z − A) < ϵ}

smin: minimal singular value

Theorem 4 (Zerbinati)

Finite element for pseudo-spectra converges.

u0 = 0 Hodge Laplacian

u1 = (1, 1) non potential

u2 = (2 cos(2x) sin(2y), 2 sin(2x) cos(2y)) potential

Umberto Zerbinati,
Mini-course

Edinburgh 2025

28 / 33



Lagrange elements lead to spurious modes again

u0 = 0 Hodge Laplacian

u1 = (1, 1) non potential

x: from nodal elements ◦: Nédélec (FEEC)
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Back to Arnold&Korkina 1983 computation

Arnold, V. I., & Korkina, E. I. (1983). The growth of a magnetic field in the three-dimensional steady flow
of an incompressible fluid. Moskovskii Universitet Vestnik Seriia Matematika Mekhanika, 43-46.

Fourier basis eik·x = ei(k1x1+···+knxn)

0 eik·x

 eik·x

eik·x

eik·x


 eik·x

eik·x

eik·x

 eik·x 0.grad curl div

“good” complex. Ongoing work with A. Bressan, Y. Zhu.

Compared to finite element exterior calculus, less attention paid to spectral basis and spectral methods.
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Summary

An exciting start...

FEEC for topological hydrodynamics

▶ Long-term evolution and rough solutions.
▶ Solvers.
▶ Nonlinear eigenvalue problems, pseudo-spectra...
▶ Turbulence.
▶ Going beyond compactness framework in computing eigenvalues.
▶ · · ·
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▶ Stable finite element methods preserving ∇ · B = 0 exactly for MHD models, K. Hu, Y. Ma, J. Xu; Numerische
Mathematik, 135(2), 371-396 (2017). divergence-free preservation

▶ Robust preconditioners for incompressible MHD models, Y. Ma, K. Hu, X. Hu, J. Xu; Journal of Computational
Physics, 316, 721-746 (2016). preconditioning

▶ Helicity-conservative finite element discretization for incompressible MHD systems, K. Hu, Y.-J. Lee, J. Xu;
Journal of Computational Physics (2021). helicity preservation

▶ Structure-preserving and helicity-conserving finite element approximations and preconditioning for the Hall
MHD equations, F. Laakmann, K. Hu, P. E. Farrell; Journal of Computational Physics (2023). Hall MHD

▶ Finite element exterior calculus for multiphysics problems, K. Hu; Peking University (2017) PhD thesis
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Oxford

▶ Topology-preserving discretization for the
magneto-frictional equations arising in the Parker
conjecture, M. He, P. E. Farrell, K. Hu, B. D.
Andrews; SISC (2025)
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▶ FEEC for dynamo, D. Boffi, K. Hu, Y.
Liang, S. Zampini, U. Zerbinati; in
preparation

▶ Pseudospectra of advection-diffusion of
differential forms, D. Boffi, K. Hu, U.
Zerbinati; in preparation
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